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第 1章 度量空间

1.1 压缩映像原理

1.1.1 基本概念

定义 1.1 (度量空间)

♣

对于集合 X，定义其上的距离函数 d : X ×X → R满足
1. 非负：d(x, y) ⩾ 0，当且仅当 x = y时取等.
2. 对称：d(x, y) = d(y, x).
3. 三角不等式：d(x, z) ⩽ d(x, y) + d(y, z).

则称 (X, d)为度量空间（或距离空间）.

注对于度量空间 (X, d)，考虑子集 Y ⊂ X，则 (Y, d|Y )称为度量子空间.
例 1.1 Rn 在欧式度量 d下为度量空间，d也称为 Rn 上的标准度量.
例 1.2设 C[a, b]表示 [a, b]上连续函数的集合，则

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)| (1.1)

是一个距离函数，故 (C[a, b], d)是一个度量空间，这称为 C[a, b]上的标准度量.

定义 1.2 (收敛)

♣

设 (X, d)为度量空间，{xn} ⊂ X，若存在 x ∈ X 使得

lim
n→∞

d(xn, x) = 0, (1.2)

则称 {xn}收敛到 x.

定义 1.3 (开集与闭集)

♣

设 (X, d)为度量空间，E ⊂ X，若对任意 x ∈ E，存在 rx > 0使得 B(x, rx) ⊂ E，则称 E 为 X 中的开

集.称 E 为 X 中的闭集，若 Ec 为 X 中的开集.

设 T 为 X 中所有开集的全体，称为 X 的拓扑，它有如下性质：

命题 1.1

♠

1. ∅, X ∈ T .
2. T 对任意并封闭.
3. T 对有限交封闭.

定义 1.4 (接触点与极限点（聚点）)

♣

设 (X, d)为度量空间，E ⊂ X,x0 ∈ X .
1. 若对任意 ε > 0，B(x0, ε) ∩ E 6= ∅，则称 x0 为 E 的一个接触点.
2. 若对任意 ε > 0，B(x0, ε) ∩ (E\{x0}) 6= ∅，则称 x0 为 E 的一个聚点（或极限点）.

注对于 E ⊂ X，定义 E 的所有接触点的全体为 E，称为 E 的闭包.



1.1 压缩映像原理

推论 1.1

♥
E ⊂ X 为闭集当且仅当 E = E，当且仅当对任意 E 中的收敛点列 {xn}，其极限 x0 ∈ E.

定义 1.5 (稠密与可分)

♣
设 (X, d)为度量空间，若 E ⊂ X 满足 E = X，则称 E在X 中稠密.若X 有可数稠密子集，则称X 可分.

例 1.3在标准度量下，Q在 R中稠密，P [a, b]（[a, b]上的多项式）在 C[a, b]中稠密.

定义 1.6 (连续性)

♣

设 (X, d), (Y, ρ)为度量空间，称 T : X → Y 在 x0 ∈ X 处连续，若对任意 ε > 0，存在 δ > 0，使得

d(x, x0) < δ ⇒ d(Tx, Tx0) < ε. (1.3)

若 T 在 X 中每一点连续，则称 T : X → Y 连续.

命题 1.2

♠

1. 映射 T : X → Y 连续当且仅当对任意开集 U ⊂ Y，T−1(U)为 X 中的开集.
2. (Heine)映射T : X → Y 在x0处连续当且仅当对任意收敛到x0的点列 {xn} ⊂ X有T (xn)→ T (x0).

定义 1.7 (Cauchy列与完备性)

♣

称 {xn}为X 中的 Cauchy列，若对任意 ε > 0，存在 N，对任意m,n > N 都有 d(xn, xm) < ε.称度量空
间 (X, d)完备，若 X 中的 Cauchy列均收敛.

例 1.4 (R, d)完备，(Q, d)不完备.
例 1.5 Lp 空间是完备的（Riesz-Fischer定理），(C[0, 1], d)也是完备的，但 (C[0, 1], ρ1)不完备，这里

ρ1(f, g) =

∫ 1

0

|f(t)− g(t)|dt. (1.4)

因为其极限函数可能不连续.

1.1.2 压缩映像原理

定义 1.8 (不动点)

♣
对于映射 T : X → X，称满足 T (x0) = x0 的点 x0 ∈ X 为 T 的不动点.

定义 1.9 (压缩映射)

♣

设 (X, d)为度量空间，称 T : X → X 为压缩映射，若存在 α ∈ (0, 1)，对任意 x, y ∈ X 有 d(Tx, Ty) ⩽
αd(x, y).

定理 1.1 (Banach不动点定理/压缩映像原理)

♥完备度量空间到自身的压缩映射有唯一不动点.

证明 设 (X, d)为完备度量空间，T 为其上的压缩映射，α ∈ (0, 1)为系数.任取 x0 ∈ X，构造点列 xn+1 = Txn，

则

d(xn+1, xn) ⩽ αd(xn, xn−1) ⩽ · · · ⩽ αnd(x1, x0) (1.5)

d(xn+p, xn) ⩽ (αn+p−1 + · · ·+ αn)d(x1, x0) (1.6)

⩽ αn

1− α
d(x1, x0), (1.7)
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1.2 完备化

故 {xn}是 Cauchy列，由完备性可知存在极限 x0，则对 xn+1 = Txn两边取极限可知 x0为 T 的不动点.假
设还有另一个不动点 x′，则

d(x0, x
′) = d(Tx0, Tx

′) ⩽ αd(x0, x
′), (1.8)

故 x0 = x′，唯一性得证.

1.2 完备化

定义 1.10 (等距映射)

♣

对于度量空间 (X1, d1), (X2, d2)，若映射 T : X1 → X2 满足

d1(x, y) = d2(Tx, Ty), (1.9)

则称 T 为等距映射.

注若 T 为单射，则称之为一个等距嵌入；若 T 为双射，则称之为一个等距同构，此时也称X1, X2（等距）同构，

易知这是一个等价关系.

定义 1.11 (完备化)

♣

对于度量空间 (X, d)，若存在完备度量空间 (X̃, d̃)，其存在一个稠密子空间 (X0, d̃)与 (X, d)同构，则称

(X̃, d̃)为 (X, d)的一个完备化.

例 1.6
1. R是 Q的完备化.
2. (L1[a, b], ρ1)是 (C[a, b], ρ1)的完备化.
3. (C[a, b], d)是 (P [a, b], d)的完备化（P 表示多项式集合）.

定理 1.2

♥任何度量空间都有完备化，且它们在（等距）同构意义下唯一.

设 (X, d)为度量空间，定理的证明与有理数的完备化过程类似，分为如下步骤：

1. 构造更大的度量空间 (X̃, d̃).
2. 构造稠密子空间 (X0, d̃) ∼= (X, d).
3. 证明 (X̃, d̃)完备.
4. 证明唯一性.

证明 Step 1.构造更大的度量空间 (X̃, d̃).
令 F 为 (X, d)中所有 Cauchy列的全体，引入等价关系：

{xn} ∼ {yn} ⇔ lim
n→∞

d(xn, yn) = 0, (1.10)

再令 X̃ = F/ ∼，定义其上的度量为1

d̃({xn}, {yn}) = lim
n→∞

d(xn, yn). (1.11)

为了说明 (X̃, d̃)为度量空间，还需要证明良定性，即上面的极限存在，并且距离不依赖代表元的选取.首先
借助三角不等式以及 Cauchy列性质易得

|d(xn, yn)− d(xm, ym)| ⩽ d(xn, xm) + d(yn, ym)→ 0, m, n→∞, (1.12)

因此 {d(xn, yn)}是 R中的 Cauchy列，其极限存在.

1虽然 X̃ 中的元素都是等价类，但简便起见，用 F 中的元素来代表其所处等价类.
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1.3 紧性

再设 {xn} ∼ {x′n}, {yn} ∼ {y′n}，则类似有

|d(xn, yn)− d(x′n, y′n)| ⩽ d(xn, x
′
n) + d(yn, y

′
n)→ 0, n→∞, (1.13)

故 d({xn}, {yn}) = d({x′n}, {y′n}).
Step 2.构造稠密子空间 (X0, d̃) ∼= (X, d).
对任意 x ∈ X，记 γ(x) = γx = (x, x, · · · )为常驻点列，则它给出了嵌入X ↪→ X̃（即将 x映为 γx的等价类，

这一嵌入依旧用 γ 表示），则易知

d(x, y) = d̃(γx, γy), (1.14)

即 γ 是等距的，设 X0 = γ(X)则有 (X0, d̃) ∼= (X, d).下证 X0 = X̃，对任意 {xn} ∈ X̃，考虑 X̃ 中的序列

{αk} = {γxk
}，根据 {xn}Cauchy列的性质可得

lim
n→∞

d̃({xn}, αk) = lim
n→∞

lim
k→∞

d(xn, xk) = 0, (1.15)

故 αk → {xn}，得证.
Step 3.证明 (X̃, d̃)完备.
任取 X̃ 中的 Cauchy列 {αk}，根据上面稠密性的证明过程，对任意 k，存在 nk 使得对应的 αk

nk
∈ αk 满足

d̃(βk, αk) := d̃(γαk
nk
, αk) <

1

k
, (1.16)

其中 βk = γαk
nk
，根据 {αk}的 Cauchy列性质可得

d(αk
nk
, αj

nj
) = d̃(βk, βj) (1.17)

⩽ d̃(βk, αk) + d̃(αk, αj) + d̃(αj , βj) (1.18)

⩽ d̃(αk, αj) +
1

k
+

1

j
(1.19)

→ 0, k, j →∞, (1.20)

即 {βk}是 Cauchy列，也即 α0 = (α1
n1
, α2

n2
, · · · )是 Cauchy列，说明 α0 ∈ X̃，因此

d̃(α0, αk) ⩽ d̃(α0, βk) + d̃(βk, α
k) (1.21)

⩽ lim
m→∞

d(αm
nm
, αk

nk
) +

1

k
(1.22)

→ 0, k →∞, (1.23)

故 αk → α0 ∈ X̃，说明 (X̃, d̃)是完备度量空间.
Step 4.证明唯一性.
设 (X ′, d′)也为 (X, d)的完备化，(X ′

0, d
′)是 (X, d)的嵌入，则存在等距同构 ϕ : X0 → X ′

0，下面将其延拓

为 X̃ 到 X ′ 的等距同构.对任意 α ∈ X̃，存在 X0 中的点列 {αk}收敛到 α（收敛点列必为 Cauchy列），此时

d̃(αj , αk) = d′(ϕ(αj), ϕ(αk))→ 0, j, k →∞, (1.24)

因此 {ϕ(αk)}是 X ′
0 中的 Cauchy列，设其在 X ′ 中的极限为 α′，则定义 ϕ的延拓 Φ使得 Φ(α) = α′，容易

验证 Φ的良定性（只要注意到 ϕ是保等价的）以及等距性（三角不等式放缩）.
根据上述定理，完备化也有等价定义

定义 1.12 (完备化)

♣

称度量空间 (X, d)的完备化为包含 (X, d)的最小的完备度量空间 (X̃, d)，也即任何能等距嵌入 (X, d)的

空间都能等距嵌入它.
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1.3 紧性

1.3 紧性

定义 1.13 (紧性)

♣
设 (X, d)为度量空间，称 A ⊂ X 为紧集，若对 A的任何开覆盖，都存在有限子覆盖.

定义 1.14 (列紧/自列紧)

♣

称 A ⊂ X 列紧，若 A中任何点列都有 X 中的收敛子列；进一步称之自列紧，若其中任何点列都有 A中

的收敛子列.若 X 本身是自列紧集，则称 (X, d)为列紧空间.

命题 1.3

♠

1. 列紧空间完备.
2. 列紧空间内任意子集都是列紧集，任意闭集都是自列紧集.

例 1.7在 (Rn, d)中，列紧等价于有界，自列紧等价于有界闭.
一般有界并不等价于列紧，例如

例 1.8在 (`2, ρ2)中，设 en = (0, · · · , 0, 1, 0, · · · )，则 {en : n ∈ N}有界，但对任意 m 6= n有 ρ2(en, em) =
√
2，

故它不列紧.
为了将有界性推广，下面定义完全有界性.

定义 1.15 (ε-网)

♣

设 A ⊂ X，称 Nε ⊂ A是 A的一个 ε-网，若

A ⊂
⋃

y∈Nε

B(y, ε), (1.25)

也即对任意 a ∈ A，存在 x ∈ Nε 使得 d(a, x) < ε.

定义 1.16 (完全有界)

♣称 A ⊂ X 完全有界，若对任意 ε > 0，A有有限 ε-网.

显然完全有界蕴含有界（考虑 1-网），反之不然，反例同上
例 1.9 {en : n ∈ N}是 (`2, ρ2)中的有界集，但其中不存在有限 1/2-网.

命题 1.4

♠完备空间中，M 列紧当且仅当对任意 ε > 0，它存在列紧 ε-网.

证明 完备空间中列紧与完全有界等价，若M 列紧，则对任意 ε > 0，其自身就是一个列紧 ε-网.
反之若对任意 ε > 0，M 存在列紧 ε-网 Nε，则 Nε/2 列紧说明 Nε/2 完全有界，即存在有限 ε/2-网

N ′
ε/2 = {y1, · · · , yn} ⊂ Nε/2

使得对任意 y ∈ Nε/2，存在某个 i使得 d(y, yi) < ε/2.而Nε/2为A的 ε/2-网，因此对任意 x ∈ A，存在 y ∈ Nε/2

使得 d(x, y) < ε/2，因此对任意 x，存在某个 yi 使得

d(x, yi) ⩽ d(x, y) + d(y, yi) < ε,

即 {y1, · · · , yn}是 A的一个 ε-网，根据 ε任意性可知 A全有界，即其列紧.

定理 1.3 (Hausdorff)

♥
度量空间 (X, d)中的列紧集必然完全有界；若 (X, d)完备，则其中完全有界集必然列紧.
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证明 首先设 A为X 中的列紧集，假设它不是完全有界的，则存在 ε0，使得 A不存在有限 ε0网，换句话说，A

不能被有限个 ε0 球覆盖.任取 x1 ∈ A，由此构造点列：
1. 存在 x2 ∈ A\B(x1, ε0)，也即 d(x1, x2) ⩾ ε0.
2. 存在 x3 ∈ A\(B(x1, ε0) ∪B(x2, ε0))，也即 d(x1, x3), d(x2, x3) ⩾ ε0.
以此类推可得 A中点列 {xn}，对任意m 6= n都有 d(xn, xm) ⩾ ε0，故无收敛子列，与紧性矛盾.
再设 X 完备，A ⊂ X 完全有界，任取 {xn} ⊂ A，设 N1/n 为 A的有限 1/n-网，下面构造其收敛子列：

1. 存在 y1 ∈ N1 以及 {xn}的子列 {x(1)n }，使得 {x(1)n } ⊂ B(y1, 1)（或者说必然有某个 B(y1, 1)包含 {xn}中
无穷多个点）.

2. 存在 y2 ∈ N1/2 以及 {x
(1)
n }的子列 {x(2)n }，使得 {x(2)n } ⊂ B(y2, 1/2).

以此类推，取对角线子列 {x(n)n }，则 x
(n)
n ∈

⋂n
k=1B(yn, 1/n)，即有

d(x
(n+p)
n+p , x(n)n ) ⩽ d(x

(n+p)
n+p , yn) + d(yn, x

(n)
n ) ⩽ 2

n
, (1.26)

故 {x(n)n }为 Cauchy列，根据 X 的完备性可得它是 {xn}的收敛子列.

定理 1.4

♥度量空间中，紧性与自列紧性等价.

注由于度量空间是 C1的，因此可通过证明紧 C1空间是自列紧的来证明第一部分.
证明 首先证明紧⇒自列紧，分两步进行.

Step 1.证明紧⇒闭.
设 A ⊂ X 紧，下证 Ac 开，任取 x ∈ Ac，则

A ⊂
⋃
y∈A

B(y, d(x, y)/3)⇒ A ⊂
m⋃
i=1

B(ym, d(x, ym)/3), (1.27)

令 δ = min{d(x, y1), · · · , d(x, ym)}/3，则 B(x, δ)与上面有限球的并无交，否则存在 a ∈ A, yk 使得

d(x, yk) ⩽ d(x, a) + d(a, yk) ⩽ δ +
1

3
d(x, yk) < d(x, yk), (1.28)

矛盾，这就说明 B(x, δ) ⊂ Ac，即 Ac 开，A闭.
Step 2.证明紧⇒列紧.
设 A ⊂ X 紧，假设存在 {xn} ⊂ A无收敛子列（不妨设该点列中任意项不同），设 Sn = {xn : n ∈ N}\{xn}，

则根据假设可知 Sn 闭，并且 {Sc
n : n ∈ N}构成 {xn : n ∈ N}的开覆盖，存在有限子覆盖

m⋃
k=1

Sc
nk
⊃ {xn : n ∈ N} ⇔

m⋂
k=1

Snk
⊂ {xn : n ∈ N}c, (1.29)

但任何 Sn ⊂ {xn : n ∈ N}，矛盾.
再来证明自列紧⇒紧.
设 A ⊂ X 自列紧，则 A完全有界，因此存在有限 1/n网 N1/n 使得

A ⊂
⋃

y∈N1/n

B(y, 1/n), (1.30)

若 A不紧，则存在开覆盖 {Gα}，其无有限子覆盖，也即对任意 n，存在 yn ∈ N1/n 使得 B(y, 1/n)不能被

有限个 Gα 覆盖，根据 A的自列紧性，{yn}存在收敛子列 ynk
→ y0 ∈ A，因此必然有某个 Gα0

3 y0，故存在
δ > 0，B(y0, δ) ⊂ Gα0

，而也存在充分大的 k使得

d(ynk
, y0) < δ/2, 1/nk < δ/2, (1.31)

这说明 B(ynk
, 1/nk)可被有限个 Gα 覆盖，矛盾.

引出紧性后，可以研究紧空间上的连续函数.设 (M,ρ)为紧度量空间，定义 C(M)为其上连续函数的全体，

定义距离

d(f, g) = sup
x∈M
|f(x)− g(x)|, (1.32)
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则断言：

命题 1.5

♠
(C(M), d)为完备度量空间.

证明 由于连续函数将紧集映为紧集，因此对任意 f ∈ C(M)，f(M)为 R中的有界闭集，故显然 d <∞.下证完
备性，设 {fn}为 C(M)中的 Cauchy列，易知对任意 x ∈M，{fn(x)}为 R中的 Cauchy列，因此可设 f 为 {fn}
的逐点极限，由于对任意 ε > 0，存在 N，对任意m,n > N, x ∈M 有

|fm(x)− fn(x)| < ε, (1.33)

因此令m→∞可得 |f(x)− fn(x)| ⩽ ε，根据 x ∈M 的任意性可知

sup
x∈M
|f(x)− fn(x)| = d(f, fn) ⩽ ε, (1.34)

故 d(f, fn)→ 0.再证 f ∈ C(M)，对任意 ε > 0，首先存在充分大的 n使得 d(f, fn) < ε/5，取 δ使得

sup
ρ(x,y)<δ

|fn(x)− fn(y)| < ε/5, (1.35)

并且M 存在网 Nδ/3 = {x1, · · · , xm}，说明对任意 x, y ∈ M，存在 xi, xj ∈ Nδ/3 使得 ρ(x, xi), ρ(y, xj) < δ/3，

因此当 ρ(x, y) < δ/3时 ρ(xi, xj) < δ，故

|f(x)− f(y)| ⩽ |f(x)− fn(x)|+ |fn(x)− fn(xi)|+ |fn(xi)− fn(xj)| (1.36)

+ |fn(xj)− f(xj)|+ |f(xj)− f(y)| (1.37)

⩽ 2d(f, fn) + 3 sup
ρ(s,t)<δ

|fn(s)− fn(t)| (1.38)

< ε (1.39)

即得 f ∈ C(M)，说明 (C(M), d)完备.
Rn中的紧集是有界闭集，那么如何刻画 (C(M), d)中的紧集呢？这是 R上 Arzela-Ascoli定理的推广，首先

定义等度连续.

定义 1.17 (等度连续)

♣

设 F 为 C(M)中的函数族，称其等度连续，若对任意 ε > 0，存在 δ > 0，对任意 f ∈ F , ρ(x, y) < δ都有

|f(x)− f(y)| < ε. (1.40)

注由于这里的 δ仅依赖 ε的选取，因此这里的等度连续也称“一致等度连续”.

定理 1.5 (Arzela-Ascoli)

♥
F ⊂ C(M)列紧当且仅当其有界且等度连续.

注有时条件会写作“一致有界”，它在 R中来看是指函数“有一致的界”，但这实际上就是在度量空间 (C(M), d)

中有界.
证明 ⇒：列紧⇒完全有界⇒有界，对任意 ε > 0，完全有界性说明存在 ε/3-网 Nε/3 = {ϕ1, · · · , ϕn}，并且存
在 δ > 0使得对每个 ϕi 有

sup
ρ(x1,x2)<δ

|ϕi(x1)− ϕi(x2)| < ε/3, (1.41)

因此对任意 ϕ ∈ F，存在某个 ϕi 使得 d(ϕ,ϕi) < ε/3，故只要 ρx1,x2
< δ就有

|ϕ(x1)− ϕ(x2)| ⩽ |ϕ(x1)− ϕi(x1)|+ |ϕi(x1)− ϕi(x2)|+ |ϕi(x2)− ϕ(x2)| (1.42)

⩽ 2d(ϕ,ϕi) + |ϕi(x1)− ϕi(x2)| (1.43)

< ε, (1.44)
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1.4 赋范向量空间

即 F 等度连续.
⇐：根据 (C(M), d)的完备性，只需证明其完全有界.F 等度连续说明对任意 ε > 0，存在 δ使得对任意 ϕ ∈ F

有

sup
ρ(x1,x2)<δ

|ϕ(x1)− ϕ(x2)| < ε, (1.45)

M 列紧说明存在 δ-网 Nδ = {x1, · · · , xn}，定义映射

T : F −→ Rn (1.46)

ϕ 7−→ (ϕ(x1), · · · , ϕ(xn)) (1.47)

则 F 有界说明 sup
x∈M,φ∈F

|ϕ(x)| = R <∞，故对任意 ϕ ∈ F

||Tϕ|| =
n∑

i=1

|ϕ(xi)| ⩽ nR, (1.48)

即 F̃ = T (F)有界，这在Rn中可得其全有界，因此存在 ε/3-网 Ñε/3 = {Tϕ1, · · · , Tϕm}，断言 {ϕ1, · · · , ϕm}
是 F 的 ε网，这是因为对任意 ϕ ∈ F，存在某个 ϕi 使得 ρn(Tϕ, Tϕi) < ε/3，对任意 x ∈M，存在 xr ∈ Nδ 使

得 ρ(x, xr) < δ，因此

|ϕ(x)− ϕi(x)| ⩽ |ϕ(x)− ϕ(xr)|+ |ϕ(xr)− ϕi(xr)|+ |ϕi(xr)− ϕi(x)| (1.49)

⩽ 2

3
ε+ ρn(Tϕ, Tϕi) (1.50)

< ε. (1.51)

对 x取上确界即得（上面的 ρn 指 Rn 中的度量）.
对于 Lp 空间中的列紧集也有具体刻画：

定理 1.6 (Riesz-Frechet-Kolmogorov)

♥

设 1 ⩽ p <∞，则 F ⊂ Lp(Rn)列紧当且仅当其满足:
1. F 有界.
2. 对任意 ε > 0，存在M > 0使得 sup

f∈F

∫
|x|>M

|f |pdx < εp.

3. 对任意 ε > 0，存在 δ > 0使得对任意 h ∈ Rn, |h| < ε都有 sup
f∈F
||τhf − f ||p < ε.

1.4 赋范向量空间
向量空间的基本概念略.

1.4.1 赋范空间

定义 1.18 (Hamel基)

♣

设 X 为向量空间，E ⊂ X 线性无关且 Span(E) = X，则称 E 为 X 的一个 Hamel基（或代数基），若
|E| <∞，则记 dimX = |E|，否则记 dimX =∞.

注 Hamel基考虑了无穷集合的任意有限和，因此 en = (δin)不是 `2 的一个 Hamel基.

定理 1.7

♥任何向量空间都有 Hamel基.
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证明 有限维是容易的，下设 X 不能被有限生成.设 S 为 X 中一个线性无关子集，设 S 为 X 中包含 S 的线性

无关集的全体，则它是集合包含关系下的偏序集，设 {Si : i ∈ I}是其一个全序子集，则
⋃

i∈I Si 是一个包含 S

的线性无关子集，即为该全序子集上界，根据 Zorn引理可知S 存在极大元H，下证 Span(H) = X，若不然则

存在 x ∈ X,x /∈ Span(H)，因此 H ⊊ H ∪ {x}，与极大性矛盾，得证.

定义 1.19 (赋范空间)

♣

设 X 为向量空间，若存在函数 || · || : X → R满足
正定性：||x|| ⩾ 0，当且仅当 x = 0时取等.
齐次性：||λx|| = |λ| ||x||.
三角不等式：||x+ y|| ⩽ ||x||+ ||y||.

则称 || · ||为 X 中的一个范数，(X, || · ||)称为赋范空间.

注根据范数可以诱导度量 d(x, y) := ||x − y||，称为 X 上的典则度量.若 X 在典则度量下完备，则称 (X, || · ||)
为 Banach空间.
例 1.10

1. Lp 空间是 Banach空间，`p 空间亦然（1 ⩽ p <∞）.
2. L∞, `∞ = {有界数列}是 Banach空间；c := {收敛数列} ⊂ `∞ 亦然.
3. 紧度量空间M 上的连续函数空间 C(M)是 Banach空间.
4. 设 Ω ⊂ Rn 有界，Ck(Ω) := {Ω上k次连续可微函数}，则定义

||f ||∗ :=
∑
|α|⩽k

sup
x∈Ω

|∂αf(x)|, (1.52)

其中

∂αf =
∂|α|f

∂α1x1 · · · ∂αnxn
, α = (α1, · · · , αn), |α| := α1 + · · ·+ αn. (1.53)

还可以定义范数

||f ||k.p. =

∑
|α|⩽k

∫
Ω

|∂αf |p
1/p

, (1.54)

若考虑

S := {f ∈ Ck(Ω) : ||f ||k.p. <∞}, (1.55)

则其在 || · ||k.p. 下的完备化称为 Sobolev空间，记为 Hk.p.(Ω).

定义 1.20 (范数的比较)

♣

设 || · ||1, || · ||2为 X 上的两个范数，若对任意 {xn : n ∈ N} ⊂ X，||xn||2 → 0⇒ ||xn||1 → 0，则称 || · ||2
强于 || · ||1（或 || · ||1弱于 || · ||1），可记为 || · ||1 ≲ || · ||2.若 || · ||1 ≲ || · ||2, || · ||2 ≲ || · ||1，则称二者等价，
记为 || · ||1 ≈ || · ||2.

定理 1.8

♥

1. || · ||1 ≲ || · ||2 ⇔ ∃C > 0, s.t.|| · ||1 ⩽ C|| · ||2.
2. || · ||1 ≈ || · ||2 ⇔ ∃C1, C2 > 0, s.t.C1|| · ||2 ⩽ || · ||1 ⩽ C2|| · ||2.

证明 ⇒：若不然，假设对任意 n，存在 xn ∈ X 使得 ||xn||1 > n||xn||2，令 yn = xn/||xn||1 可得矛盾

||yn||2 <
1

n
⇒ ||yn||2 → 0⇒ ||yn||1 = 1→ 0. (1.56)
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另一边显然，第二条亦然.
例 1.11 Rn 可嵌入 `p 中，即定义 p-范数

||x||p :=

(
n∑

k=1

|xk|p
)1/p

||x||∞ := max
1⩽k⩽n

|xk|. (1.57)

易见

||x||∞ ⩽ ||x||p ⩽ n1/p||x||∞, (1.58)

因此任何 p-范数都是等价的（特别它们都与∞-范数等价）.这并不是巧合，考虑下述定理.

定理 1.9

♥有限维向量空间上所有范数都等价.

证明 设 dimX = n，有基 {e1, · · · , en}为其一组基，则任意 x ∈ X 可唯一表示为 x =
∑n

k=1 ξkek，定义映射

T : X −→ Fn (1.59)

x 7−→ (ξ1, · · · , ξn) (1.60)

则 T 为线性同构，令

|ξ| :=

(
n∑

k=1

|ξk|2
)1/2

, ||x||T := |Tx|, (1.61)

则 || · ||T 为 X 上范数，下证对 X 上任意范数 || · ||有 || · || ≈ || · ||T .令

p : Fn −→ R (1.62)

ξ 7−→ ||T−1(ξ)|| =

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

ξkek

∣∣∣∣∣
∣∣∣∣∣ (1.63)

则 p(ξ) = |ξ|p(ξ/|ξ|)且 p为连续，这是因为

|p(ξ)− p(η)| ⩽
∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

(ξk − ηk)ek

∣∣∣∣∣
∣∣∣∣∣ ⩽

n∑
k=1

|ξk − ηk| ||ek|| (1.64)

⩽
(

n∑
k=1

||ek||2
)1/2( n∑

k=1

|ξk − ηk|2
)1/2

(1.65)

=

(
n∑

k=1

||ek||2
)1/2

|ξ − η|, (1.66)

令 S1 = {ξ ∈ Fn : |ξ| = 1}，则 S1 紧，设 C1, C2 为 p在其上的最小、最大值，则

C1 ⩽ p

(
ξ

|ξ|

)
⩽ C2 ⇒ C1|ξ| ⩽ p(ξ) ⩽ C2|ξ|, (1.67)

因此

C1||x||T = C1|Tx| ⩽ p(Tx) = ||x|| ⩽ C2|Tx| = C2||x||T , (1.68)

再说明 C1 6= 0，C1 = 0当且仅当存在 ξ ∈ S1, p(ξ) = 0，这时有矛盾

p(ξ) = 0⇔
n∑

k=1

ξkek = 0⇔ ξ = 0 /∈ S1. (1.69)

在线性空间的基础上，可以定义赋范空间的同构.

定义 1.21 (赋范空间同构)

♣
称 (X, || · ||X), (Y, || · ||Y )同构，若存在线性空间同构 T : X → Y 且 T, T−1 均连续.

注从拓扑的角度来看，赋范空间的同构实际上是范数诱导度量诱导的拓扑空间的同胚.
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定理 1.10

♥有限维同维赋范空间彼此同构.

证明 考虑上一条定理中的线性同构.

推论 1.2

♥有限维赋范空间必然是 Banach空间.

推论 1.3

♥任何赋范空间的有限维子空间都是闭子空间.

证明 有限维赋范空间完备，因此其中任意收敛点列都收敛到自身，故它是闭子空间.
下面的结论刻画了有限维赋范空间，首先考虑引理.

引理 1.1 (Riesz)

♥
设 (X, || · ||)，Y 为其真闭（赋范线性）子空间，则对任意 ε > 0，存在 e ∈ S1 使得 d(e, Y ) ⩾ 1− ε.

证明 Y ⊊ X 说明存在 x ∈ X\Y，因此 d = d(x, Y ) > 0（结合 Y 闭）.对任意 ε > 0，存在 y0 ∈ Y 使得

d ⩽ ||x− y0|| ⩽
d

1− ε
, (1.70)

令 e = (x− y0)/||x− y0||，则对任意 z ∈ Y 有

||e− z|| = 1

||x− y0||
||x− (y0 + ||x− y0||z)|| ⩾

1− ε
d
· d = 1− ε, (1.71)

取下确界得证.
注意到子空间中的单位球实际上是其与大空间单位球之交，因此根据 Riesz 引理，对一列闭子空间 X1 ⊊

X2 ⊊ · · ·，可规定 ε > 0，取得 xn ∈ Xn ∩S1满足 d(xn, Xn−1) ⩾ 1− ε，由此对任意m,n有 ||xn− xm|| ⩾ 1− ε，
即得大空间中单位球面上的一个无收敛子列的点列.由此可证

定理 1.11

♥
设 (X, || · ||)，则 X 中单位球面列紧当且仅当 dimX <∞.

证明 ⇐：考虑同构 T : X → Fn（同前述定理中的构造），则存在 C1, C2 > 0使得

C1|Tx| ⩽ ||x|| ⩽ C2|Tx|, (1.72)

因此 T (S1) ⊂ Fn 列紧、有界，因此对任意 {xk} ⊂ S1，{Txk}有收敛子列，设 Txkj
→ y ∈ Fn，则

||xkj
− T−1y|| ⩽ C2|Txkj

− y| → 0. (1.73)

⇒：假设 dimX = ∞，则存在一列 {en : n ∈ N}线性无关，令 Xn = Span(e1, · · · , en)，则存在一列（闭）
子空间X1 ⊂ X2 ⊂ · · ·，根据 Riesz引理，取 ε = 1/2，则对任意 n，存在 xn ∈ Xn ∩ S1使得 d(xn, Xn−1) ⩾ 1/2，

即 {xn} ⊂ S1 但对任意 n 6= m有 ||xn − xm|| ⩾ 1/2，故 S1 不列紧.

1.4.2 商空间

定义 1.22 (商空间)

♣

设 (X, || · ||)，X0 为其闭子空间，则线性商空间 X/X0 在商范数

||[x]||∗ = inf
y∈[x]

||y|| (1.74)

下是赋范空间，称为 X 的商空间.
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1.4 赋范向量空间

注这里 X0 的闭性是必要的，否则上述定义的 || · ||∗ 未必是一个范数（||[x]||∗ = 0不保证 [x] = 0）.

命题 1.6

♠
沿用上述记号，(X/X0, || · ||∗)是赋范空间，并且当 (X, || · ||)完备时，它也是完备的.

证明 首先证明这确实是一个范数，齐次是显然的，若 ||[x]||∗ = 0，则存在 xn ∈ [x]使得 ||xn|| → 0 ⇒ xn → 0，

X0 的闭性说明 0 ∈ [x]，因此 [x] = [0]，得证.再证三角不等式，首先

||[x] + [y]||∗ = ||[x+ y]||∗ = inf
z∈[x+y]

||z||, (1.75)

取 {xn} ⊂ [x], {yn} ⊂ [y]使得

lim
n→∞

||xn|| = ||[x]||∗, lim
n→∞

||yn|| = ||[y]||∗, (1.76)

则 {xn + yn} ⊂ [x+ y]并且

||[x] + [y]||∗ = ||[x+ y]||∗ ⩽ ||xn + yn|| → ||[x]||∗ + ||[y]||∗, (1.77)

得证.若 (X, || · ||)完备，只需证明商空间中所有绝对收敛级数都收敛，设
∑∞

n=1 ||[xn]||∗ <∞，根据商范数定义
可知存在 yn ∈ X0 使得 ||xn + yn|| ⩽ ||[xn]||∗ + 1/2n，因此

∞∑
n=1

||xn + yn|| ⩽
∞∑

n=1

||[xn]||∗ + 1 <∞, (1.78)

X 的完备性说明
∑∞

n=1(xn + yn)收敛到某个 x ∈ X，因此∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

[xn]− [x]

∣∣∣∣∣
∣∣∣∣∣
∗

⩽
∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

(xk + yk)− x

∣∣∣∣∣
∣∣∣∣∣→ 0, (1.79)

故
∑∞

n=1[xn] = [x]，得证.
上面的证明用到了一个习题中的结论：

命题 1.7

♠
(X, || · ||)完备当且仅当对任意 {xn} ⊂ X，

∑∞
n=1 ||xn|| <∞⇒

∑∞
n=1 xn收敛，或者说绝对收敛蕴含收敛.

证明 ⇒：设 {xn} ⊂ X 满足
∑∞

n=1 ||xn|| <∞，令 yn =
∑n

k=1 xk，则对任意 ε > 0，存在 N 使得对任意 n > N

有
∑

n>N ||xn|| < ε，因此对任意 n > N, p ∈ N有

||yn − yn+p|| =

∣∣∣∣∣
∣∣∣∣∣

n+p∑
k=n+1

xk

∣∣∣∣∣
∣∣∣∣∣ ⩽

∞∑
k=n+1

||xk|| < ε, (1.80)

即 {yn}是 Cauchy列，由完备性可知它收敛.
⇐：任取 X 中 Cauchy列 {xn}，则对任意 ε > 0，存在 N(ε)使得对任意 n > N(ε), p ∈ N有

||xn − xn+p|| < ε, (1.81)

设 n1 = N(1/2)，则对任意 n > n1有 ||xn − xn1
|| < 1/2；再令 n2 = max{n1, N(1/22)}+ 1，则 n1 < n2且对任

意 n > n2 有 ||xn − xn2
|| < 1/22，以此类推可得子列 {xnk

}满足

||xnk
− xnk+1

|| < 1

2k
⇒

∞∑
k=1

||xnk
− xnk+1

|| ⩽ 1 <∞, (1.82)

根据条件可知
∑∞

k=1(xnk+1
− xnk

)收敛，而其部分和为 xnm =
∑m−1

k=1 (xnk+1
− xnk

)，因此 Cauchy列 {xn}
存在收敛点列 {xnk

}，进而其收敛，故 X 完备.
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1.4 赋范向量空间

1.4.3 内积空间

定义 1.23 (内积空间)

♣

设 X/F为向量空间，若二元函数 〈·, ·〉 : X ×X → F满足
第一个位置的线性：〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉.
共轭对称性：〈x, y〉 = 〈y, x〉.
正定性：〈x, x〉 ⩾ 0，当且仅当 x = 0时取等.

注显然内积可以诱导范数 ||x|| = 〈x, x〉，反过来范数能诱导内积当且仅当其满足平行四边形定则 ||x+y||2+ ||x−
y||2 = 2(||x||2 + ||y||2).
例 1.12

`2 上有内积 〈x, y〉 =
∑∞

n=1 xnȳn.
L2 上有内积 〈f, g〉 =

∫
fḡ.

引理 1.2 (Cauchy-Schwarz)

♥

设 X 为内积空间，则对任意 x, y ∈ X 成立

|〈x, y〉| ⩽ ||x|| ||y||, (1.83)

等号成立当且仅当存在 λ ∈ F 使得 x = λy.

证明 不妨设 y 6= 0，对任意 λ ∈ F 有

0 ⩽ 〈x+ λy, x+ λy〉 = ||x||2 + 2Re (λ̄〈x, y〉) + |λ|2||y||2. (1.84)

取 λ = −〈x, y〉/||y||2 则有

0 ⩽ ||x||2 − 2
|〈x, y〉|2

||y||2
+
|〈x, y〉|2

||y||4
||y||2 = ||x||2 − |〈x, y〉|

2

||y||2
, (1.85)

移项即得.

定义 1.24 (Hilbert空间)

♣若内积空间 X 的诱导范数完备，则称之为 Hilbert空间.

命题 1.8 (极化恒等式)

♠

设 X 为内积空间，则

1. 若 F = R则 〈x, y〉 = (||x+ y||2 − ||x− y||2)/4.
2. 若 F = C则 〈x, y〉 =

∑3
k=0 i

k||x+ iky||2/4.

命题 1.9 (平行四边形法则)

♠

设 X 为内积空间，则对任意 x, y ∈ X 有

||x+ y||2 + ||x− y||2 = 2(||x||2 + ||y||2). (1.86)

定理 1.12 (Frechet-Von Neumann)

♥
范数 || · ||由 X 上的内积诱导当且仅当 || · ||满足平行四边形法则.

证明

13



1.4 赋范向量空间

定义 1.25 (正交性)

♣

设 X 为内积空间

1. 称 x, y ∈ X 正交，若 〈x, y〉 = 0.
2. 称 x ∈ X,M ⊂ X 正交，若 〈x, y〉 = 0, ∀y ∈ M .对于集合M，称所有与其正交的向量全体为M 的

正交补，记为M⊥.
3. 若 S ⊂ X 中的任何两个不同向量正交，则称之为 X 中的正交集.特别若 S 中每个向量都是单位向

量，则称之位规范正交集.

注容易验证若 x ⊥M 则 x ⊥ Span(M)；对任意M ⊂ X，M⊥ 是一个闭子空间.

命题 1.10

♠
若M = X，则M⊥ = {0}.

证明 对任意 y ∈ X,x ∈M⊥，取 {yn} ⊂M 使得 yn → y则

0 = 〈x, yn〉 ⇒ 〈x, y〉 = lim
n→∞

〈x, yn〉 = 0, (1.87)

故 x = 0.

定义 1.26 (完备正交集)

♣
若正交集 S 满足 S⊥ = {0}，则称其完备.

定理 1.13

♥任何非平凡内积空间必有完备正交集.

证明 设 S 为 X 的一个正交集，设 S 为 X 中包含 S 的正交集的全体，它是集合包含关系下的偏序集.设 {Si :

i ∈ I}为其全序子集，则
⋃

i∈I Si是一个包含 S的正交集，即为该全序子集的上界，由 Zorn引理可知S 存在极

大元 H，若存在 x /∈ H 使得 x ⊥ H，则 H ⊊ H ∪ {x}，与极大性矛盾，因此 H 即为完备正交集.

定义 1.27 (规范正交基)

♣

设 S = {eα}为 X 的规范正交集，若对任意 x ∈ X，都有唯一表示

x =
∑
α

〈x, eα〉eα, (1.88)

则称 S 是 X 的一个规范正交基，此时称 {〈x, eα〉}为 x的 Fourier系数.

定理 1.14 (Bessel不等式)

♥

设 {eα : α ∈ Λ}为 X 的规范正交基，则对任意 x ∈ X 有∑
α∈Λ

|〈x, eα〉|2 ⩽ ||x||2. (1.89)

证明 设 A = {α1, · · · , αN}为 Λ的有限子集，则

0 ⩽
∣∣∣∣∣
∣∣∣∣∣x−

N∑
i=1

〈x, eαi〉eαi

∣∣∣∣∣
∣∣∣∣∣ (1.90)

= ||x||2 −
N∑
i=1

〈x, eαi〉〈eαi , x〉 −
N∑
i=1

〈x, eαj 〉〈x, eαj 〉+
N∑

i,j=1

〈x, eαi〉〈x, eαj 〉δij (1.91)

= ||x||2 −
N∑
i=1

|〈x, eαj 〉|2, (1.92)

14



1.4 赋范向量空间

故 Bessel不等式对 Λ的任意有限子集成立，由此可以看出对任意 n ∈ N，集合 Λn := {α ∈ Λ : |〈x, eα〉| > 1/n}
是至多可数的（因为 ||x||有限），因此对有限情形取极限即得.
由于绝对收敛级数可换序，因此上面对至多可数个 en的排列顺序不会影响结果，为了说明规范正交基的表

示是良定的，需要解决另一个问题，即正交基表示 x =
∑

α〈x, eα〉eα 是否依赖 eα 的顺序？

1.4.4 最佳逼近元

数学中常用一组元素的线性组合逼近一个元素，在赋范空间中这种问题反映为对任意 x以及 e1, · · · , en ∈ X，
是否存在 λ1, · · · , λn ∈ F 使得 ∣∣∣∣∣

∣∣∣∣∣x−
n∑

i=1

λiei

∣∣∣∣∣
∣∣∣∣∣ = inf

α∈Fn

∣∣∣∣∣
∣∣∣∣∣x−

n∑
i=1

αiei

∣∣∣∣∣
∣∣∣∣∣ , (1.93)

换句话说，令M = Span(e1, · · · , en)，是否存在 y0 ∈M 使得

||x− y0|| = inf
y∈M
||x− y|| = d(x,M). (1.94)

这里的
∑n

i=1 λiei 或者 y0 就称为 x的最佳逼近元.

定理 1.15

♥对于有限个向量 e1, · · · , en，最佳逼近元存在.

证明 不妨设 e1, · · · , en 线性无关，考虑函数

F : Fn −→ R (1.95)

α 7−→

∣∣∣∣∣
∣∣∣∣∣x−

n∑
i=1

αkek

∣∣∣∣∣
∣∣∣∣∣ , (1.96)

则易知 F 连续，并且

F (α) ⩾
∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

αkek

∣∣∣∣∣
∣∣∣∣∣− ||x||, (1.97)

定义 |||α||| := ||
∑n

i=1 αkek||，则它是 Fn上的范数，并且存在 C > 0使得 |||α||| ⩾ C|α|（有限维赋范空间的范数
等价），则 F (α) ⩾ C|α| − ||x|| → ∞, |α| → ∞，因此 F 在 Fn 上有最小值.

定义 1.28 (凸集)

♣
设 X 为向量空间，C ⊂ X，若对任意 x, y ∈ C, λ ∈ [0, 1]，λx+ (1− λ)y ∈ C，则称 C ⊂ X 为凸集.

定理 1.16 (变分引理)

♥
设X为Hilbert空间，M ⊂ X为非空闭凸集，则对任意 x ∈ X，存在唯一 y0 ∈M 使得 ||x−y0|| = d(x,M).

证明 令 d = d(x,M) = infz∈M ||x− z||，则存在 {yn} ⊂M 使得 ||x− yn|| → d，由平行四边形法则可得

||(ym − x)− (yn − x)||2 + ||(ym − x) + (yn − x)||2 = 2(||ym − x||2 + ||yn − x||2), (1.98)

||ym − yn||2 = 2(||ym − x||2 + ||yn − x||2)− 4||x− (ym + yn)/2||2 (1.99)

⩽ 2(||ym − x||2 + ||yn − x||2)− 4d2 (1.100)

→ 0, m, n→∞ (1.101)

因此 {yn}为 Cauchy列，根据完备性可知其收敛到某个 y0 ∈ M，即为所求.唯一性借助平行四边形法则同样易
证.

定理 1.17 (正交分解)

♥设 X 为 Hilbert空间，M 为其闭子空间，则 H =M ⊕M⊥.
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1.4 赋范向量空间

证明 对任意 x ∈ X，存在唯一 y ∈M 使得 ||x− y|| = d(x,M) := d，下证 x− y ∈M⊥，对任意 w ∈M,λ ∈ F有

d2 ⩽ ||x− (y + λw)||2 = ||x− y||2 − 2Re (λ̄〈x− y, w〉) + |λ|2||w||2, (1.102)

取 λ = 〈x− y, w〉/||w||2 可得

d2 ⩽ ||x− y||2 − |〈x− y, w〉|
2

||w||2
⩽ d2, (1.103)

因此必有 〈x− y, w〉 = 0.

定义 1.29 (正交投影)

♣设 X 为 Hilbert空间，M 为其闭子空间，则投影映射 PM : X →M,x 7→ y称为 H 到M 的正交投影.

命题 1.11

♠

1. ImPM ∈M, Im (I − PM ) = KerPM =M⊥，P 2
M = PM .

2. I = PM + PM⊥ .
3. ||x− PM (x)|| = d(x,M).
4. ||PM (x)|| ⩽ ||x||.

回到对规范正交基表示的良定性的讨论，

引理 1.3

♥

设X 为 Hilbert空间，{en : n ∈ N}为其中一个规范正交集，设M = Span(en : n ∈ N)，则对任意 x ∈ X，∑∞
k=1〈x, ek〉ek = PM (x).

证明 根据 Bessel不等式有
∑∞

k=1 |〈x, ek〉|2 ⩽ ||x||2，因此 {
∑n

k=1〈x, ek〉ek}是 X 中的基本列，X 的完备性说明∑∞
k=1〈x, ek〉ek ∈ X，而

〈x−
∞∑
k=1

〈x, ek〉ek, em〉 = 〈x, em〉 −
∞∑
k=1

〈x, ek〉〈ek, em〉 = 0, (1.104)

故 x−
∑∞

k=1〈x, ek〉ek ∈M⊥，根据定义有
∑∞

k=1〈x, ek〉ek = PM (x).
根据上述引理，即使对 {en}进行重排，M 不变，最后得到的结果依旧为 PM (x)，因此正交基的表示与排列

无关.

定理 1.18

♥

设 X 为 Hilbert空间，{eα}为规范正交集，则对任意 x ∈ X，
∑

α〈x, eα〉eα ∈ X，并且

||x−
∑
α

〈x, eα〉eα||2 = ||x||2 −
∑
α

|〈x, eα〉|2. (1.105)

定理 1.19

♥

设 X 为 Hilbert空间，S = {eα}为规范正交集，则下述等价：
1. S 完备（即 S⊥ = {0}）.
2. S 是规范正交基.
3. S 满足 Parseval等式，即 ||x||2 =

∑
α |〈x, eα〉|2, ∀x ∈ X .

证明 1 ⇒ 2：设 S 完备，若 S 不是规范正交基，则存在 x0 ∈ H 使得 x0 −
∑

α〈x0, eα〉eα = y 6= 0，容易验证

y ∈ S⊥，与完备性矛盾.
2⇒ 3：根据上一条定理显然.
3⇒ 1：根据 Parseval等式可直接得到 S⊥ = {0}.
因此在Hilbert空间中，完备正交集与规范正交基是等价的，而已经证明过任意内积空间都有完备正交集，因
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1.4 赋范向量空间

此

推论 1.4

♥任一 Hilbert空间都有规范正交基.

例 1.13 `2 中，{en}是一个规范正交基（但它不是 Hamel基，并且其 Hamel基必定是不可数的）.

1.4.5 Hilbert空间的同构

定理 1.20 (Gram-Schmidt正交化)

♥

设 X 为内积空间，{xn : n ∈ N}为一列线性无关向量，则存在规范正交集 {en : n ∈ N}使得 Span(xn :

n ∈ N) = Span(en : n ∈ N).

定义 1.30 (内积空间的同构)

♣

设 (X1, 〈〉1), (X2, 〈〉2)为内积空间，若存在线性同构 T : X1 → X2 使得 〈x, y〉1 = 〈Tx, Ty〉2，则称二者是
同构的内积空间.

定理 1.21

♥

Hilbert空间X可分当且仅当其有至多可数的规范正交基 S.进一步，若 |S| <∞，则X ∼= F |S|，若 |S| =∞，
则 X ∼= `2.

证明 ⇒：设 {xn : n ∈ N}为其可数稠密子集，则其中必然存在至多可数的规范正交基 {en : n ∈ N}（先取线性
无关子集，再做正交化），并且

Span(en : n ∈ N) = Span(xn : n ∈ N) = X, (1.106)

因此 {en}是 X 的规范正交基.
⇐：若 {en}为 X 至多可数的规范正交基，则集合{∑

n

anen : Re (an), Im (an) ∈ Q

}
(1.107)

是其可数稠密子集，故 X 可分.
进一步的同构是显然的.
由此可知，可分 Hilbert空间可以很自然进行分类.

1.4.6 Fourier级数的收敛

对于圆周 S1上的函数 F ∈ L2(S1)，可令 f(t) = F (e2πit)，即将 F 对应到 R上以 1为周期的周期函数 f，令

ek(t) = e2πit，则 {ek : k ∈ Z}是一个规范正交集，下证这是一组规范正交基.定义

f̂(k) =

∫ 1/2

−1/2

f(t)e−2πiktdt, (1.108)

并且定义 f 的 Fourier级数为

f(x) ∼
∞∑

k=−∞

f̂(k)e2πikx =

∞∑
k=−∞

〈f, ek〉ek. (1.109)
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1.4 赋范向量空间

定理 1.22

♥

对任意 f ∈ L2(S1)，记 SN (f)(x) =
∑N

n=−N f̂(n)e2πinx，则

lim
N→∞

||f − SN (f)||2 = 0. (1.110)

证明 根据前面的结论，这等价于 {en}是 L2(S1)的一组规范正交基，也等价于

({en : n ∈ Z})⊥ = {0} ⇔ Span({en : n ∈ Z}) = L2(S1), (1.111)

设 Fourier级数的 Cesaro求和为

σN (f) =
1

N + 1

N∑
k=0

Sk(f), (1.112)

因此只需证明 ||f−σN (f)||2 → 0，注意到SN (f)(x) = f∗DN (x)，其中DN为Dirichlet核，则σN (f)(x) = f∗FN (x)，

其中 FN 为 Fejer核，并且是一个好核，因此 ||f − f ∗ FN ||2 → 0.
这就证明了，对任意 f ∈ L2(S1)，SN (f)

a.e.→ f .
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第 2章 线性算子与线性泛函

2.1 线性算子

定义 2.1 (线性算子)

♣

设X,Y 为K-向量空间，若映射 T : X → Y 满足 T (ax+ by) = aTx+ bTy，则称 T 为线性算子（或线性

映射）.特别当 Y = K 时，称 T 是一个线性泛函.

例 2.1
微分算子：设 Ω ⊂ Rn 为开集，X = Y = C∞(Ω)，则 T =

∑
|α|⩽k aα∂

α 是一个线性算子.
积分算子：设K 为 Ω× Ω上轭调可测函数，X = L2(Ω), Y 为 Ω上可测函数的全体，则由

T (u)(s) =

∫
Ω

K(s, t)u(s)dt (2.1)

定义的算子是线性算子.
Fourier变换算子F 是线性算子.

定义 2.2 (有界性)

♣
设X,Y 为赋范空间，称线性算子 T : X → Y 有界，若存在C > 0使得对任意 x ∈ X有 ||Tx||Y ⩽ C||x||X .

注这里的有界性与函数的有界性不同，此处有界性等价于 T 将有界集映为有界集（考虑 S1 即可）.

命题 2.1 (有界性与连续性的等价)

♠设 X,Y 为赋范空间，若线性算子 T : X → Y 有界，则其连续；反之若其在 0处连续，则其有界.

证明 若 T 有界，则 ||T (x−y)||Y ⩽ C||x−y||X，故其连续，反之设它在 0处连续，假设它无界，则对任意 n ∈ N，
存在 xn ∈ X 使得

||Txn||Y > n||xn||X ⇒ ||Tyn|| > 1, yn =
xn

n||xn||X
→ 0, (2.2)

这与 T 在 0处的连续性矛盾.

定理 2.1

♥有限维赋范空间 X,Y 之间的线性算子一定有界.

注事实上，上面的结论可以加强到只有 X 是有限维的情形.
证明 由于有限维空间中的范数等价，因此只需证明欧氏范数下的有界性. 设 X = Kn, Y = Km，则线性算子

T : X → Y 在一组基下是一个m× n矩阵，借助 Cauchy-Schwarz不等式可得

||Tx||Y =

 m∑
i=1

∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣
2


1/2

⩽

( m∑
i=1

|aij |2
) n∑

j=1

|xj |2
1/2

=

 m∑
i=1

n∑
j=1

|aij |2
1/2

||x||X (2.3)

故它在欧氏范数下有界，得证.
例 2.2 无界算子 设 X = C1[0, 1], Y = C[0, 1]（赋一致范数），T = d

dt : X → Y，令 xn(t) = tn，则 ||xn|| =
1, ||Txn|| = n，故 ||T || = n→∞，即 T 是无界算子.



2.2 Riesz表示定理及其应用

定义 2.3 (线性算子空间)

♣

设 X,Y 为赋范空间，记 L(X,Y )为从 X 到 Y 的有界线性算子的全体，定义 L(X,Y )上的（算子）范数

||T || := sup
x∈X\{0}

||Tx||Y
||x||X

= sup
||x||X=1

||Tx||Y . (2.4)

注一般简记 L(X,X) = L(X)以及 L(X,K) = X∗，后者称为 X 的对偶空间.

命题 2.2

♠
在算子范数下，L(X,Y )为一个赋范空间，并且当 Y 是 Banach空间时，L(X,Y )也是 Banach空间.

注因此 X∗ 总是 Banach空间.
证明 赋范空间是显然的，设 Y 完备，{Tn}为 L(X,Y )中的 Cauchy列，则对任意 ε > 0，存在 N 使得对任意

m,n > N 有 ||Tn − Tm|| < ε，进而对任意 x ∈ X 有

||Tnx− Tmx||Y ⩽ ||Tn − Tm|| ||x||X < ε||x||X , (2.5)

这说明 {Tnx}为 Cauchy列，故它收敛到 y ∈ Y，定义线性算子 T 为 Tn 的逐点极限，令上式中 m → ∞可得
||Tnx− Tx|| ⩽ ε||x||X，因此

||Tx|| ⩽ ||Tx− Tnx||+ ||Tnx|| ⩽ (ε+ ||TN ||)||x||X ⇒ T ∈ L(X,Y ), (2.6)

因此 L(X,Y )完备.

2.2 Riesz表示定理及其应用
对于 Hilbert空间 H，对任意 y ∈ H，定义 fy : H → K 为 fy(x) = 〈x, y〉，则由于 |fy(x)| ⩽ ||y|| ||x||，因此

fy ∈ H∗且 ||fy|| ⩽ ||y||.事实上，与有限维情形类似，Hilbert空间的线性泛函都可以表示维内积的情形，即如下
Riesz表示定理.

定理 2.2 (Riesz表示定理)

♥
设 H 为 Hilbert空间，则对任意 f ∈ H∗，存在唯一 yf ∈ H 使得 f(x) = 〈x, yf 〉，并且 ||f || = ||yf ||.

证明【存在性】对于 f ∈ L(X,Y )，设M = Ker f，则 f 在 0处的连续性说明M 为闭子空间，因此X =M⊕M⊥，

即对任意 x ∈ X 有分解（其中任取 x0 ∈M⊥ 且 ||x0||X = 1）

x = y + αx0 ∈M ⊕M⊥ ⇒ α = 〈x, x0〉, f(x) = f(y) + αf(x0) = αf(x0) = f(x0)〈x, x0〉, (2.7)

因此令 yf = f(x0)x0 就有

f(x) = αf(x0) = 〈x, f(x0)x0〉 = 〈x, yf 〉, (2.8)

进一步显然 ||f || ⩽ ||yf ||，并且 ||yf || = |f(x0)| ⩽ ||f ||，故 yf 满足要求.
【唯一性】假设存在 y, y′ 均满足条件，即对任意 x ∈ X 有 f(x) = 〈x, y〉 = 〈x, y′〉，则 〈x, y − y′〉 = 0，取

x = y − y′ 可得 y = y′.

定理 2.3

♥

设H 为 Hilbert空间，a为其上的共轭双线性函数，存在M > 0满足 |a(x, y)| ⩽M ||x|| ||y||，则存在唯一
A ∈ L(H)使得 a(x, y) = 〈x,Ay〉，并且 ||A|| = sup

x,y ̸=0

|a(x,y)|
||x|| ||y|| .

证明 固定 y ∈ H，考虑 fy(x) = a(x, y) ∈ H∗，由 Riesz表示定理，存在 zy ∈ H 使得 fy(x) = 〈x, zy〉，设线性算
子 A : H → H, y 7→ zy，则

a(x, y) = 〈x, zy〉 = 〈x,Ay〉 ⇒ ||Ay|| = ||zy|| = ||fy|| ⩽M ||y|| ⇒ ||A|| ⩽M,A ∈ L(H), (2.9)
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2.3 Baire纲定理

最后等式的一边是显然的，另一边有

|a(x, y)| = |〈x,Ay〉| ⩽ ||x|| ||Ay|| ⩽ ||x|| ||A|| ||y|| ⇒ sup
x,y ̸=0

|a(x, y)|
||x|| ||y||

⩽ ||A||. (2.10)

2.3 Baire纲定理

2.3.1 Baire纲定理

定义 2.4 (疏集)

♣
设 (X, d)为度量空间，E 为其子集，若 E 没有内点，则称 E 为疏集（或无处稠密集）.

例 2.3
有限点集是疏集.
Q不是疏集.
Cantor集是疏集（并且它是不可数的）.

定义 2.5 (纲集)

♣

第一纲集：可数个疏集之并.
第二纲集：非第一纲集.
剩余集：第一纲集的余集.

例 2.4
可数点集是第二纲集.
第二纲集中删去第一纲集得到的余集还是第二纲集.

引理 2.1 (闭球套定理)

♥

设 (X, d)为完备度量空间，{Bn}为一列单调递减（集合的包含意义下）、直径趋于 0的球，则
∞⋂
i=1

Bi =

{x} ⊂ X .

证明 设 Bn = B(xn, rn)，则对任意 n ⩾ m有

xn ∈ Bn ⊂ Bm = B(xm, rm)⇒ d(xn, xm) ⩽ rm, (2.11)

因此 {xn}为 Cauchy列，X 完备说明 xn → x，Bn 闭说明 x ∈
⋂∞

n=1Bn，若还有 x′ ∈
⋂∞

n=1Bn，则

d(x, x′) ⩽ d(x, xn) + d(xn, x
′) ⩽ 2rn → 0, (2.12)

因此 x = x′.

定理 2.4 (Baire纲定理)

♥完备度量空间是第二纲集.

证明 假设完备度量空间 X 是第一纲的，即 X =
⋃∞

n=1En，每个 En 都是疏集.首先任取 B(x0, r0)，E1 为疏集

说明存在 B(x1, r1) ⊂ B(x0, r0)使得

B(x1, r1) ∩ E1 = ∅, r1 < 1 (2.13)

这是因为 (E1)
◦ = ∅，存在 x1 ∈ B(x0, r0)\E1，而这是开集，因此存在满足条件的 r1.同理，E2为疏集说明存在

B(x2, r2) ⊂ B(x1, r1)使得

B(x2, r2) ∩ E2 = ∅, r2 <
1

2
, (2.14)
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2.3 Baire纲定理

以此类推，{B(xn, rn)}为一列闭球套，故存在 x ∈
⋂∞

n=1B(xn, rn)，但根据球的取法可知对任意n有 {x}∩En = ∅，
因此 x /∈ X，矛盾.

推论 2.1

♥
设 (X, d)为完备度量空间，若有闭集分解 X =

⋃∞
n=1 Fn，则必有某个 Fn0

有内点.

由于完备空间的闭集完备，因此 Baire纲定理实际上证明了如下命题：

命题 2.3 (Baire)

♠
设 (X, d)为完备度量空间，{Fn}为一列闭疏集，则

⋃∞
n=1 Fn 也是疏集.

注意到 Fn为闭疏集当且仅当 F c
n为稠密开集，Fn的并集无内点当且仅当 F c

n的交集稠密，因此有如下等价

命题

命题 2.4 (Baire)

♠
设 (X, d)为完备度量空间，{Un}为一列开稠密集，则

⋂∞
n=1 Un 也是稠密集.

推论 2.2 (一般 Hamel基的不可数性)

♥`2 的 Hamel基是不可数集.更一般地，无穷维 Banach空间的 Hamel基也是不可数集.

证明 假设 `2 的 Hamel基 B为可数集，记 B = {xn : n ∈ N}，令 Fn = Span(x1, · · · , xn)，则 Fn 为闭集，并且

显然 `2 =
⋃∞

n=1 Fn，因此必定存在某个 Fn0
有内点，不妨设 x ∈ B(x, r) ⊂ Fn0

，但有矛盾

x+
r

2

xn0+1

||xn0+1||
∈ B(x, r)\Fn0

. (2.15)

2.3.2 纲推理

数学中有时候可以通过证明某种对象的集合非常“大”以得其存在性，例如证明它是第二纲集，这种方法

称为纲推理.例如为说明 [0, 1]上存在处处连续单处处不可微的函数，可以证明如下命题：

定理 2.5 (Banach,1931)

♥
[0, 1]上处处连续但处处不可微的函数是第二纲集.

证明 设 X = (C[0, 1], d)，A为 X 中处处不可微的函数的全体，下证 X\A为第一纲集（则由 X 的完备性可知

A是第二纲集）.令

An =

{
f ∈ X : ∃t ∈ [0, 1− 1

n
]s.t. sup

h∈(0, 1
n )

∣∣∣∣f(t+ h)− f(t)
h

∣∣∣∣ ⩽ n

}
, (2.16)

则 X\A =
⋃∞

n=1An，只需证明每个 An 都是疏集.设 {fk}为 An 中收敛到 f ∈ X 的序列（实际上就是一致收
敛），则对任意 k ∈ N，存在 tk ∈ [0, 1− 1/n]使得

|fk(tk + h)− fk(tk)| ⩽ nh, ∀h ∈ (0,
1

n
), (2.17)

则 {tk}存在收敛子列 tkj → t0 ∈ [0, 1− 1/n]，并且对任意 ε > 0，可取 j 充分大使得 |t0 − tkj | < δ(hε/4)（即满

足 f 一致连续性的控制），并且 d(f, fkj ) < hε/4，则

|f(t0 + h)− f(t0)| ⩽ |f(t0 + h)− f(tkj + h)|+ |f(tkj + h)− fkj (tkj + h)| (2.18)

+ |fkj
(tkj

+ h)− fkj
(tkj

)|+ |fkj
(tkj

)− f(tkj
)|+ |f(tkj

)− f(t0)| (2.19)

⩽ |f(t0 + h)− f(tkj + h)|+ |f(tkj )− f(t0)|+ 2d(f, fkj ) + nh (2.20)

⩽ h

4
ε+

h

4
ε+

h

2
ε+ nh = (n+ ε)h (2.21)
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2.4 三大定理

⇒ |f(t0 + h)− f(t0)| ⩽ nh, ∀h ∈ (0,
1

n
), (2.22)

因此 f ∈ An，即 An 为闭集.最后证明 An = An 无内点，即对任意 f ∈ An, ε > 0，存在 ϕ ∈ B(f, ε)\An，首先

存在 p ∈ P [0, 1]使得 d(p, f) < ε/2，设M = ||p′|| <∞，由中值定理可得

|p(t+ h)− p(t)| ⩽Mh, ∀h ∈ (0,
1

n
), (2.23)

设 g ∈ X 为分段仿射函数（锯齿函数）且满足 ||g|| < ε/2，并且各段斜率的绝对值 > n+M，令 ϕ = p+ g，则

||ϕ− f || ⩽ ||p− f ||+ ||g|| < ε⇒ ϕ ∈ B(f, ε), (2.24)

|ϕ′(t)| ⩾ |g′(t)| − |p′(t)| > n⇒ ϕ /∈ An, (2.25)

得证.

2.4 三大定理

2.4.1 共鸣定理/一致有界原理

定理 2.6 (一致有界原理 (Uniform Boundedness Theorem))

♥
设X为 Banach空间，Y 为赋范空间，F ⊂ L(X,Y )，若对任意 x ∈ X，sup

T∈F
||Tx|| <∞，则 sup

T∈F
||T || <∞.

证明 对任意 n ∈ N，考虑闭集

Fn = {x ∈ X : sup
T∈F
||Tx|| ⩽ n} =

⋂
T∈F
{x ∈ X : ||Tx|| ⩽ n} =

⋂
T∈T

T−1(BY (0, n)) (2.26)

则 X =
⋃∞

n=1 Fn. 由 Baier 纲定理，必定存在某个 Fn0 有内点，即存在 x0 ∈ B(x0, r) ⊂ Fn0，因此对任意

x ∈ S1, T ∈ F 有

||T (x0 + rx)|| ⩽ n0 ⇒ ||Tx|| ⩽
1

r
(n0 + ||Tx0||) ⩽

2n0
r

(2.27)

⇒ ||T || = sup
x∈S1

||Tx|| ⩽ 2n0
r
, (2.28)

对 T 取上确界得证.
上述定理有一个等价形式，也因此被称为共鸣定理.

定理 2.7 (共鸣定理)

♥

设 X 为 Banach空间，Y 为赋范空间，F ⊂ L(X,Y )，若 sup
T∈F
||T || =∞，则存在 x0 ∈ X，使得

sup
T∈F
||Tx0|| =∞. (2.29)

定理 2.8 (Banach-Steinhaus)

♥

设X 为 Banach空间，Y 为赋范空间，T, Tn ∈ L(X,Y )，则 Tnx→ Tx, ∀x ∈ X 当且仅当 supn ||Tn|| <∞
且存在 X 的稠密子空间M 使得 Tnx→ Tx, ∀x ∈M .

注该定理说明线性算子的逐点收敛可以由它的一致有界性和在一个稠密子集上的逐点收敛性刻画.
证明 ⇒：显然的.

⇐：令 C = supn ||Tn||，对任意 ε > 0, x ∈ X，存在 y ∈M 使得 ||x− y|| < ε/(4(||T ||+C))，同时当 n充分

大时有 ||Tny − Ty|| < ε/2，因此

||Tnx− Tx|| ⩽ ||Tn(x− y)||+ ||Tny − Ty||+ ||T (y − x)|| (2.30)

⩽ ||Tn|| ||x− y||+ ||Tny − Ty||+ ||T || ||x− y|| (2.31)
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2.4 三大定理

<
ε

4
+
ε

2
+
ε

4
(2.32)

= ε. (2.33)

定理 2.9 (Du Bois-Reymond,1876)

♥
存在 f ∈ C(T )，使得 {SN (f)(0)}发散，其中 SN 为 Fourier级数的部分和.

证明 SN (f) = f ∗DN，其中 DN (t) = sin[(2N+1)πt]
sin(πt) 为 Dirichlet核.令 TN = SN |x=0 : C(T )→ R，则

|TN (f)| = |SN (f)(0)| =

∣∣∣∣∣
∫ 1/2

−1/2

f(t)DN (−t)dt

∣∣∣∣∣ ⩽ ||DN ||1||f || ⇒ ||TN || ⩽ ||DN ||1, TN ∈ C(T )∗, (2.34)

由共鸣定理，只需证明 supN ||TN || =∞，断言 ||TN || = ||DN ||1（进而 ||DN ||1 ⩾ CHN，HN 为调和级数的部分

和，故 supN ||TN || = supN ||DN ||1 =∞）.
由于 sgnDN 在 [−1/2, 1/2] 上至多有限个间断点（因为 DN (x) 在区间中至多有限个零点），因此可考虑

f(x) = sgnDN (x)，对任意 ε > 0，存在分段线性函数 fε ∈ C(T )使得 ||fε||1 = 1，并且存在开集 Iε，使得

fε
∣∣
[−1/2,1/2]\Iε

= f, m(Iε) <
ε

2N + 1
, (2.35)

则有（注意 |DN (x)| ⩽ 2N + 1）

||TN || ⩾ |TN (fε)| ⩾ |TN (f)| − |TN (fε)− TN (f)| ⩾ ||DN ||1 − ε (2.36)

令 ε→ 0即得.

2.4.2 开映射定理

对于算子方程 Tx = y，有时会关注解的稳定性，而这实际上等价于 T−1 的连续性.

定理 2.10 (逆算子定理)

♥
设 X,Y 为 Banach空间，T ∈ L(X,Y )为双射，则 T−1 ∈ L(X,Y ).

上述定理有更一般的推广，称为开映射定理（注意到 T 为双射时，T−1 的连续性等价于 T 的开性）.

定理 2.11 (开映射定理 (Open Mapping Theorem))

♥
设 X,Y 为 Banach空间，T ∈ L(X,Y )为满射，则 T 是开映射.

证明 设 U 为X 中的开集，对任意 y = Tx ∈ T (U)，作平移 V = U − x，则借助算子的线性性，问题化归到：T
是否将 0X 的开邻域 BX 映为 0Y 的开邻域？这时若存在 δBY ⊂ T (BX)，加上存在 tBX ⊂ V（0 ∈ V ◦），则有

tδBY ⊂ T (tBX) ⊂ T (V )⇒ B(y, tδ) = y + tδBY ⊂ T (x+ V ) = T (U), (2.37)

即得 y ∈ T (U)◦，说明 T (U)为开集.因此只需证明下面的引理：

引理 2.2

♥
设X,Y 为 Banach空间，T ∈ L(X,Y )为满射，则存在 δ > 0使得 δBY ⊂ T (BX)（BX , BY 均为单位球）.

证明 【STEP 1.证明存在 r > 0使得 rBY ⊂ T (BX)】

由于 X =
⋃∞

n=1 nBX，T 为满射说明 Y = T (X) =
⋃∞

n=1 T (nBX) =
⋃∞

n=1 T (nBx)，由 Baire纲定理，必有
某个 T (n0Bx)有内点，即存在 B(y0, t) ⊂ T (n0Bx)，则对任意 y ∈ tBY 有

y0 + y, y0 − y ∈ B(y0, t) ⊂ T (n0BX), (2.38)

因此存在 {xn}, {x′n} ⊂ n0Bx 使得 Txn → y0 + y, Tx′n → y0 − y，进而

T (n0BX) ⊃ T
(
xn − x′n

2

)
→ y ⇒ y ∈ T (BX) (2.39)
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2.4 三大定理

这说明 tBY ⊂ T (n0BX)，令 r = t/n0 即得 rBY ⊂ T (BX).
【STEP 2.令 δ = r/3，证明 δBY ⊂ T (BX)，即对任意 y ∈ δBY，存在 x ∈ BX 使得 Tx = y】

下面采用逐次逼近法，构造级数
∑∞

n=1 xn = x ∈ BX，使其像恰好为 y = Tx ∈ T (BX).
对任意 y ∈ δBY 有 3y ∈ rBY ⊂ T (BX)，即存在 x̃1 ∈ BX 使得

||3y − T x̃1|| < δ ⇒ || y − Tx1︸ ︷︷ ︸
y1

|| < δ

3
= r, x1 ∈ 3−1BX , (2.40)

因此 3y1 ∈ δBY , 3
2y1 ∈ rBY ⊂ T (BX)，即存在 x̃2 ∈ BX , x2 ∈ 3−2BX 使得

||32y1 − T x̃2|| < δ ⇒ || y1 − Tx2︸ ︷︷ ︸
y2

|| < δ

32
, (2.41)

以此类推，记 yn = yn−1 − Txn ∈ 3−nδBY，则存在 xn+1 ∈ 3−(n+1)BX 使得

||yn − Txn+1|| <
δ

3n+1
⇒

∣∣∣∣∣
∣∣∣∣∣

n+p∑
k=n+1

xk

∣∣∣∣∣
∣∣∣∣∣ < 1

3n+1

1− 1
3

<
1

2n+1
, (2.42)

由 X 的完备性可知
∑∞

k=1 xk := x ∈ X，并且当 N 充分大时

||x|| ⩽
∣∣∣∣∣
∣∣∣∣∣x−

N∑
k=1

xk

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

xk

∣∣∣∣∣
∣∣∣∣∣ < 1⇒ x ∈ BX , (2.43)

进一步可得

δ

3n
> ||yn|| = ||yn−1 − Txn|| = · · · = ||y − T (x1 + · · ·+ xn)|| ⇒ T

(
n∑

k=1

xk

)
→ y = Tx, (2.44)

即对任意 y ∈ δBY，存在 x ∈ BX 使得 Tx = y，得证.

定理 2.12 (Lax-Milgram)

♥

设 H 为 Hilbert空间，a(·, ·)为共轭双线性函数满足
存在 C > 0使得 |a(x, y)| ⩽ C||x|| ||y||, ∀x, y ∈ H .
存在 δ > 0使得 |a(x, x)| ⩾ δ||x||2, ∀x ∈ H .

则存在唯一 A ∈ L(H)使得 a(x, y) = 〈x,Ay〉，并且 ||A−1|| ⩽ δ−1.

证明 前半部分根据 Riesz表示定理易得，下证后半部分.
A单：对任一 x ∈ KerA都有 |〈Ax, x〉| ⩾ δ||x||2 ⩾ 0，当且仅当 x = 0时取等.
A满：首先证明 ImA闭，设 {Axn} ⊂ ImA收敛到 y，则

δ||xn − xm||2 ⩽ |〈xn − xm, A(xn − xm)〉| ⩽ ||Axn −Axm|| ||xn − xm|| ⇒ ||xn − xm|| ⩽
1

δ
||Axn −Axm||,

(2.45)

因此 {xn}是 Cauchy列，由完备性可得 xn → x0 ∈ H，因此 Axn → Ax0 = y ∈ Im f .再证 (ImA)⊥ = {0}，
设 x ∈ (ImA)⊥，则必有 〈x,Ax〉 = 0，因此 δ||x||2 = 0，说明 x = 0，因此 ImA = H，A满.
A−1 连续：由开映射定理易得，对其算子范数的估计亦然.

定理 2.13 (等价范数定理)

♥
若线性空间 X 上有范数 || · ||1 ≲ || · ||2，并且在二者下都构成 Banach空间，则 || · ||1 ≈ || · ||2.

证明 || · ||1 ≲ || · ||2等价于 Id ∈ L((X, || · ||2), (X, || · ||1))，根据逆算子定理有 Id ∈ L((X, || · ||1), (X, || · ||2))，因
此二者等价.
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2.4 三大定理

2.4.3 闭图像定理

命题 2.5 (乘积空间的完备性)

♠

设X,Y 为 Banach空间，在X×Y 上赋范 ||(x, y)||X×Y = ||x||X + ||y||Y，则 (X×Y, || · ||X×Y )也是 Banach
空间.

定义 2.6 (图像 &闭算子)

♣

设 T : X → Y 为线性算子，定义其图像为

Gr(T ) = {(x, Tx) : x ∈ Dom(T )}, (2.46)

若 Gr(T )为 X × Y 的闭子空间，则称 T 为闭算子.

注一般 Dom(T )不一定是闭的.

引理 2.3

♥
T 为闭算子当且仅当对任意 Dom(T ) 3 xn → x, Txn → y，都有 x ∈ Dom(T ), y = Tx.

证明 条件相当于 (xn, Txn)→ (x, y) = (x, Tx) ∈ Gr(T ).
例 2.5无界闭算子 d

dt : C[0, 1] → C[0, 1],Dom( d
dt ) = C1[0, 1]是无界闭算子，无界性已证，对任意 Dom( d

dt ) 3
un → u, u′n → v，有（注意到 C[0, 1]中的收敛实际上是一致收敛）

un(t)− un(0) =
∫ t

0

u′n(s)ds⇒ u(t)− u(0) =
∫ t

0

v(s)ds, (2.47)

因此 v = u′，说明 (u, v) ∈ Gr( d
dt )，即

d
dt 闭.

命题 2.6

♠
若 T : X → Y 有界，Dom(T )是闭子空间，则 T 是闭算子.

定理 2.14 (Bounded Linear Transformation)

♥
设X 为赋范空间，Y 为 Banach空间，则任意 T ∈ L(Dom(T ), Y )能唯一保泛延拓为 T̃ ∈ L(Dom(T ), Y ).

证明 对任意 x ∈ Dom(T )，存在 Dom(T ) 3 xn → x，而

||Txn − Txm|| ⩽ ||T || ||xn − xm|| → 0, (2.48)

因此由 Y 的完备性可得 Txn → y ∈ Y，因此可定义 T̃ x = y，线性性显然，良定性易证.并且

||T̃ x|| = ||y|| = lim
n→∞

||Txn|| ⩽ ||T || lim
n→∞

||xn|| = ||T || ||x||, (2.49)

因此 ||T̃ || ⩽ ||T || <∞，而 ||T || ⩽ ||T̃ ||是显然的，得证.
例 2.6对于 f ∈ L1(Rn)，可作 Fourier变换

F(f)(ξ) = f̂(ξ) =

∫
Rn

f(x)e−2πix·ξdx, (2.50)

则 Fourier变换可以延拓到 L2(Rn)中.首先 L1 ∩L2 ⊂ L2且稠密，并且有 Plancherel等式有 ||F(f)||2 = ||f ||2，因
此 F ∈ L((L1 ∩ L2, || · ||2), L2)，根据 B.L.T.，它可以唯一延拓为 F ∈ L(L2).

定理 2.15 (闭图像定理 (Closed Graph Theorem))

♥
设 X,Y 为 Banach空间，T : X → Y 为闭线性算子，若 Dom(T )为闭集，则 T ∈ L(X,Y ).

证明 【证明 1】这时Gr(T )为X ×Y 的闭子空间，因此 (Gr(T ), || · ||X×Y )为X ×Y 的闭子空间，并且投影映射
π1, π2均连续，π1为双射，由逆算子定理可知 π−1连续，因此 T = π2 ◦ π−1

1 连续（上面用到了 (Dom(T ), || · ||X)
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2.5 Hahn-Banach定理

的完备性）.
【证明 2】由于 (Dom(T ), || · ||X)为 Banach空间，在 Dom(T )上定义“图像范数”

||x||G := ||x||X + ||Tx||Y , (2.51)

则 ||xm − xn||G → 0说明 {xn}, {Txn}均为 Cauchy列，因此 xn → x, Txn → y，T 为闭算子说明 y = Tx，因此

x即为 {xn}在图像范数下的极限，说明图像范数完备，由等价范数定理可知 || · ||G ≈ || · ||，因此存在 C 使得

||x||X + ||Tx||Y ⩽ C||x||X ⇒ ||T || ⩽ C − 1 <∞⇒ T ∈ L(X,Y ). (2.52)

推论 2.3 (Hellinger-Toeplitz)

♥
设 H 为 Hilbert空间，T : H → H 为自伴线性算子（即 〈x, Ty〉 = 〈Tx, y〉），则 T 有界.

证明 设 xn → x, Txn → y，则对任意 z ∈ H 有

〈z, Tx〉 = 〈Tz, x〉 = lim
n→∞

〈Tz, xn〉 = lim
n→∞

〈z, Txn〉 = 〈z, y〉, (2.53)

因此 y = Tx，即 T 为闭算子，再加上 Dom(T ) = H 闭，由闭图像定理可得 T 连续.

¶一些小结论

命题 2.7

♠

设 X,Y 为赋范空间，D为 X 的子空间，A : D → Y 为线性映射，则

1. 若 A连续，D闭，则 A是闭算子.
2. 若 A为连续闭算子，则 Y 完备⇒ D闭.
3. 若 A为单闭算子，则 A−1 也是闭算子.
4. 若 X 完备，A为单闭算子，R(A) = Y，A−1 连续，则 R(A) = Y .

证明

1. 对任意 D 3 xn → x,Axn → y，D 闭说明 x ∈ D，A连续说明 Axn → Ax = y，因此 (x, y) = (x,Ax) ∈
Gr(A)，即 A是闭算子.

2. 对任意 D 3 xn → x，A连续说明 ||Axn − Axm|| ⩽ ||A|| ||xn − xm|| → 0，即 {Axn}为 Y 中的 Cauchy列，
因此存在 y ∈ Y 使得 Axn → y，由于 A是闭算子，因此有 (x, y) ∈ Gr(A)，即 x ∈ D，说明 D为闭集.

3. A 为单射说明可以定义线性算子 A−1 : Ran(A) → X（并且它也是单射），对任意 Ran(A) 3 yn →
y,A−1yn → x，记 xn = A−1yn，则这等价于 Axn = yn → y, xn → x，由 A的闭性可得 y = Ax，因此

x = A−1y，说明 (y, x) ∈ Gr(A−1)，因此 A−1 为闭算子.
4. 这时 A−1 : Ran(A) → X 为连续闭算子（由 3），X 完备说明 Dom(A−1) = Ran(A) 为闭集（由 2），
Ran(A) = Ran(A) = Y .

2.5 Hahn-Banach定理

2.5.1 实复向量空间形式

定义 2.7 (次线性泛函 (sublinear functional))

♣

设 X 为向量空间，若函数 p : X → R满足
正齐次性：对任意 t ⩾ 0有 p(tx) = tp(x).
次可加性：p(x+ y) ⩽ p(x) + p(y).

则称 p为 X 上的次线性泛函.
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2.5 Hahn-Banach定理

注若 p还满足 p(λx) = |λ|p(x)，则称 p是一个半范数.并且半范数一定是非负的，因为 0 = p(0) ⩽ p(x)+p(−x) =
2p(x).此外半范数一般不满足 p(x) = 0⇔ x = 0.

定理 2.16 (实 Hahn-Banach定理)

♥

设X 为实向量空间，M 为其子空间，p为X 上的次线性泛函，f 为M 上的线性泛函，满足 f(x) ⩽ p(x)，

则 f 可以延拓为 X 上的线性泛函 F，满足

1. F |M = f .
2. F (x) ⩽ p(x), ∀x ∈ X .

证明 【STEP 1.证明 f 可以延拓到 M̃ =M ⊕ 〈x0〉上】
首先对任意 x, y ∈M 有

f(x) + f(y) = f(x+ y) ⩽ p(x+ y) ⩽ p(x− x0) + p(y + x0) (2.54)

⇒ f(x)− p(x− x0) ⩽ p(y + x0)− f(y) (2.55)

⇒ sup
x∈M

[f(x)− p(x− x0)] ⩽ inf
y∈M

[p(y + x0)− f(y)], (2.56)

因此存在 β ∈ R使得

f(x)− p(x− x0) ⩽ β ⩽ p(y + x0)− f(y), (2.57)

定义延拓 f̃(x0) = β，则对任意 x ∈M,λ > 0都有

f̃(x+ λx0) = λ(f(x/λ) + β) ⩽ λp(x/λ+ x0) = p(x+ λx0), (2.58)

f̃(x− λx0) = λ(f(x/λ)− β) ⩽ λp(x/λ− x0) = p(x− λx0), (2.59)

即得满足条件的延拓 f̃ .进一步可知，f 可以向外延拓任意有限维.
【STEP 2.借助 Zorn引理证明一般情形】
设M ⩽ N ⩽ X，若 N 上存在 f 的延拓 fN，则取对 (N, fN )，令X 为这种对的全体，定义其上的偏序

(N1, f1) ⩽ (N2, f2)⇔ N1 ⩽ N2, f2|N1 = f1, (2.60)

则对其中任意全序子集 {(Ni, fi)}，取N =
⋃

iNi，fN =
⋃

i fi（即对任意 x ∈ N，若 x ∈ Ni则定义 fN (x) = fi(x)），

它是该子集的上界，因此X 有极大元 (K, fK)，易知 K = X，（否则可以将其向外延拓一维，与极大性矛盾），

故 fK = F 即为所需延拓.

定理 2.17 (复 Hahn-Banach定理)

♥

设X 为复向量空间，M 为其子空间，p为X 上的半范数，f 为M 上的线性泛函，满足 |f(x)| ⩽ p(x)，则

f 可以延拓为 X 上的线性泛函 F，满足

1. F |M = f .
2. |F (x)| ⩽ p(x), ∀x ∈ X .

证明 首先将X,M 视为实向量空间，并且令 g(x) = Re f(x)，则由实 H-B定理可得延拓 G(x)，注意到对任意复

线性泛函 h有 Imh(x) = −Im ih(ix) = −Reh(ix)，因此令 F (x) = G(x)− iG(ix)可得

F (ix) = G(ix) + iG(x) = i[G(x)− iG(ix)] = iF (x), ∀x ∈ X, (2.61)

即 F 为复线性泛函，并且设 argF = θ可得

F (x) = g(x)− ig(ix) = f(x), ∀x ∈M, (2.62)

|F (x)| = e−iθF (x) = F (e−iθx) = G(eiθx) ⩽ p(eiθx) = p(x), ∀x ∈ X, (2.63)

因此 F 为满足要求的延拓（注意 F (e−iθx) = |F (x)|的虚部为 0）.
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推论 2.4 (赋范空间中的 Hahn-Banach定理)

♥

设 X 为赋范空间，M 为其子空间，则对任意 f ∈M∗，存在 F ∈ X∗ 使得

1. F |M = f .
2. ||F ||X = ||f ||M .

注这一延拓也被称为保范延拓.
证明 构造 X 上的半范数 p(x) = ||f ||M ||x||，必然存在 X 上的线性泛函 F 使得

F |M = f, |F (x)| ⩽ p(x), ∀x ∈ X, (2.64)

因此 ||F ||X ⩽ ||f ||M，但另一方面显然 ||f ||M = ||F |M ||M ⩽ ||F ||X，因此 ||F ||X = ||f ||M，得证.
例 2.7 Hahn-Banach定理中的延拓一般不是唯一的，一方面从实情形证明中 β的选取可以看出，另一方面可以考

虑保泛延拓的例子：对于 (R2, || · ||1)，令M = R× {0}，定义 f(x1, 0) = x1有 Ft(x1, x2) = x1 + tx2，则对任意

t ∈ (−1, 1)，Ft|M = f，并且

|Ft(x1, x2)| ⩽ |x1|+ |t| |x2| ⩽ |x1|+ |x2| = ||(x1, x2)||1 ⇒ ||Ft||X = 1 = ||f ||M , (2.65)

因此 f 的保范延拓不唯一.

推论 2.5

♥
设 X 为赋范空间，对任意 x0 ∈ X，存在 f ∈ X∗ 使得 ||f || = 1以及 f(x0) = ||x0||.

证明 令M = Span(x0)，定义 f0 ∈M∗, f0(λx0) = λ||x0||，则 ||f0||M = 1，Hahn-Banach定理说明存在保范延拓
f 满足条件.

推论 2.6

♥

设 X 为赋范空间.
若 X 6= {0}，则 X∗ 6= {0}.
对任意 x 6= y ∈ X，存在 f ∈ X∗ 使得 f(x) 6= f(y).
对于 x ∈ X，若对任意 f ∈ X∗ 都有 f(x) = 0，则 x = 0.

推论 2.7 (用泛函刻画范数)

♥
设 X 为赋范空间，则对任意 x ∈ X，||x|| = sup

f∈X∗,||f ||=1

|f(x)|.

证明 首先对任意 ||f || = 1有

|f(x)| ⩽ ||f || |x| = |x| ⇒ sup
f∈X∗
||f||=1

|f(x)| ⩽ ||x||, (2.66)

另一方面，存在 f ∈ X∗, ||f || = 1, |f(x)| = ||x||，因此上式可取等.

定理 2.18 (泛函分离闭集与单点)

♥

设 X 为赋范线性空间，M 为其子空间，则对任意 x0 ∈ X, d := d(x0,M) > 0，存在 f ∈ X∗ 使得

||f || = 1, f(M) = {0}, f(x0) = d. (2.67)

证明 令 M̃ = M ⊕ Span(x0)，定义 f0 : M̃ → F，f(y + λx0) = λd，则 f0(M) = {0}, f0(x0) = d，对任意

x = y + λx0 ∈ M̃ 有

|f0(x)| = |λ|d ⩽ |λ| ||x0 +
y

λ
|| = ||x|| ⇒ ||f0|| ⩽ 1, f0 ∈ M̃∗, (2.68)

因此存在延拓 f ∈ X∗ 满足

f |
M̃

= f0, f(M) = {0}, f(x0) = d, ||f || = ||f0|| ⩽ 1, (2.69)

29



2.5 Hahn-Banach定理

只需证明 ||f || ⩾ 1.对任意 n ∈ N，存在 yn ∈M 使得 ||x0 − yn|| ⩽ d+ 1
n，因此

||f || ⩾ |f(x0 − yn)|
||x0 − yn||

⩾ d

d+ 1
n

=
1

1 + 1
nd

, (2.70)

令 n→∞即得.

推论 2.8

♥

设 X 为赋范空间，M 为其子空间，则对任意 x ∈ X，x ∈ M 当且仅当对任意 f ∈ X∗, f(M) = 0都有

f(x0) = 0.

证明 一边显然；对于另一边，若 x0 /∈M，则存在 f ∈ X∗ 使得 f(M) = 0, f(x0) = d(x0,M) > 0，矛盾.

2.5.2 几何形式：凸集分离定理

¶凸集

定义 2.8 (凸集)

♣

设 X 为向量空间，C ⊂ X，若对任意 x, y ∈ C, t ∈ [0, 1]，tx + (1 − t)y ∈ C，则称 C 为凸集；若还有

C = −C 则称为对称凸集；若对任意 x ∈ X，存在 t > 0使得 x
t ∈ C，则称为吸收凸集.

注显然凸集的任意交还是凸集.

定义 2.9 (凸包)

♣
设 X 为向量空间，A ⊂ X，定义 conv(A) =

⋂
A⊂C凸 C 为 A的凸包（即包含 A的最小凸集）.

对于 x1, · · · , xn ∈ X，可定义其凸组合为{
n∑

k=1

λkxk :

n∑
k=1

λk = 1

}
. (2.71)

命题 2.8

♠
conv(A) = {A中向量的凸组合}.

定义 2.10 (Minkovski泛函)

♣

设 X 为向量空间，C 为包含 0的凸集，定义

PC : X −→ [0,+∞] (2.72)

x 7−→ inf{t > 0 :
1

t
x ∈ C} (2.73)

称为 C 上的Minkovski泛函.

注 PC(x) = +∞当且仅当 {t > 0 : 1
tx ∈ C} = ∅.

命题 2.9 (Minkovski泛函是次线性泛函)

♠

PC(0) = 0.
正齐次性：PC(tx) = tPC(x), ∀x ∈ X, t > 0.
次可加性：PC(x+ y) ⩽ PC(x) + PC(y).

证明 只证最后一条，对任意 x, y ∈ X, ε > 0，令

λ = PC(x) +
ε

2
, µ = PC(y) +

ε

2
, (2.74)
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则 x/λ, y/µ ∈ C，而
x+ y

λ+ µ
=

λ

λ+ µ

x

λ
+

µ

λ+ µ

y

µ
∈ C, (2.75)

因此

PC(x+ y) ⩽ λ+ µ ⩽ PC(x) + PC(y) + ε, (2.76)

由 ε任意性即得.

定义 2.11 (均衡集)

♣设 X 为复向量空间，若对任意 x ∈ C, θ ∈ R都有 eiθx ∈ C，则称 C 是均衡集.

命题 2.10

♠复向量空间中的每个均衡吸收凸集都决定了一个半范数.

证明 吸收保证了 pC <∞，均衡保证了 pC(tx) = |t|pC(x).

命题 2.11 (Minkovski泛函连续的刻画)

♠设 C 为吸收凸集，则 pC 连续当且仅当 0为 C 的内点.

证明 ⇒：一方面显然 C◦ ⊂ {x : pC(x) < 1} = p−1
C ((−∞, 1))，而 pC((−∞, 1)) ⊂ C，因此 pC 连续说明

pC((−∞, 1)) ⊂ C◦，因此 C◦ = {x : pC(x) < 1}，因此 0 ∈ C◦.
⇐：首先证明 0处的连续性，0 ∈ C◦ 说明对任意 ε > 0，εC 也是 0的邻域，因此对任意 x ∈ εC 有

|pC(x)| = ε
∣∣∣pC (x

ε

)∣∣∣ ⩽ ε, (2.77)

因此 pC 在 0处连续.
由次线性性可得对任意 x, y有

pC(x) ⩽ pC(x− y) + pC(y), (2.78)

pC(y) ⩽ pC(y − x) + pC(x) (2.79)

⇒ |pC(x)− pC(y)| ⩽ max{pC(x− y), pC(y − x)}, (2.80)

根据 0附近的连续性可得 pC 的（一致）连续性.

¶超平面分离凸集

定义 2.12 (极大子空间)

♣设 X 为实向量空间，称M ⊂ X 为 X 的极大子空间，若对任意M ⊊ Y ⊂ X 都有 Y = X .

命题 2.12 (极大子空间的等价刻画)

♠

M 为 X 的极大子空间当且仅当存在 x0 ∈ X 使得 X = M ⊕ Span(x0)，也当且仅当 codimM :=

dimX/M = 1.

定义 2.13 (超平面)

♣称线性空间中极大子空间的平移为超平面.

对线性泛函 f，记 Hr
f = f−1(r)，下述命题说明超平面必定是这种形式.
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2.5 Hahn-Banach定理

命题 2.13 (超平面的形式)

♠
L为超平面当且仅当存在线性泛函 f 以及 r ∈ R使得 L = Hr

f .

注特别地，超平面 Hr
f 是闭的当且仅当 f ∈ X∗.

证明 ⇐：注意 H0
f = Ker f，断言它是极大子空间（则 Hr

f 是它的平移），取 x0 ∈ X\H0
f，则对任意 x ∈ X 有

f

(
x− f(x)

f(x0)
x0

)
= 0⇒ x− f(x)

f(x0)
x0 ∈ H0

f ⇒ X = H0
f ⊕ Span(x0), (2.81)

说明 H0
f 极大.

⇒：设L =M+a为超平面，M为极大子空间，则存在 x0使得X =M⊕Span(x0)，定义 f ∈ X∗, f(y+λx0) =

λ，则 f(M) = 0, f(x0) = 1，M = Ker f = H0
f , L = f−1(f(a)) = H

f(a)
f .

定义 2.14 (超平面的分离)

♣

设 X 为实向量空间，A,B ⊂ X .
1. 称 Hr

f 分离 A,B，若 f(A) ≶ r ≶ f(B)（也可通过取上下确界来描述）.
2. 称 Hr

f 严格分离 A,B，若上面的不等号（确界情形）是严格的.

定理 2.19 (凸集与点的分离)

♥
设 X 为实赋范空间，C 为有内点的凸集，x0 /∈ C，则存在闭超平面 Hr

f 分离 C, x0.

证明 不妨设 0为 C 的内点，则 PC 为次线性泛函，C = {x ∈ X : PC(x) ⩽ 1}，因此 x0 /∈ C 说明 PC(x0) ⩾ 1，

令M = Span(x0), f0 ∈M∗ 使得 f0(λx0) = λPC(x0)，则

f0 ∈ Span(x0)
∗, f0(x) ⩽ PC(x), ∀x ∈M, (2.82)

由 Hahn-Banach定理，f0 可以延拓为 f ∈ X∗，满足

f(x) ⩽ PC(x) ⩽ 1 ⩽ PC(x0) = f(x0) ∀x ∈ C, (2.83)

因此 H1
f 分离 C, x0.

定理 2.20 (凸集分离定理 1)

♥
设 X 为实赋范空间，A为开凸集，B 为凸集，A ∩B = ∅，则存在闭超平面 Hr

f 分离 A,B.

证明 考虑不包含 0的开凸集 C = A−B = {a− b : a ∈ A, b ∈ B}，则存在闭 H0
f 分离 C, 0，即得

sup
z∈C

f(z) ⩽ 0 = f(0)⇔ sup
x∈A

f(x) ⩽ inf
y∈B

f(y), (2.84)

令 r = 1
2 [sup

x∈A
f(x) + inf

y∈B
f(y)]，则 Hr

f 分离 A,B.

定理 2.21 (凸集分离定理 2)

♥
设 X 为实赋范空间，A为闭凸集，B 为紧凸集，A ∩B = ∅，则存在闭超平面 Hr

f 严格分离 A,B.

证明 设 ε := 1
3d(A,B) > 0，则 Aε = A+B(0, ε), Bε = B +B(0, ε)是无交开凸集，由前述定理可得闭Hr

f 分离

Aε, Bε，即

sup
x∈Aε

f(x) ⩽ r ⩽ inf
y∈Bε

f(y)⇒ f(x+ εz) ⩽ r ⩽ f(y + εz), ∀x ∈ A, y ∈ B, z ∈ B(0, 1) (2.85)

⇒ −f(z) ⩽ f(y)− r
ε

, ||f || ⩽ f(y)− r
ε

, ∀z ∈ B(0, 1), y ∈ B (2.86)

⇒ r ⩽ f(y)− ε||f || ⇒ r ⩽ inf
y∈B

f(y)− ε||f || < inf
y∈B

f(y), (2.87)
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同理可得 sup
x∈A

f(x) < r，因此 Hr
f 严格分离 A,B.

推论 2.9 (Ascoli)

♥
设 X 为实赋范空间，C 为闭凸集，x0 /∈ C，则存在闭超平面 Hr

f 严格分离 C, x0.

推论 2.10

♥

设X 为实赋范空间，M 为其子空间，则M 6= X 当且仅当存在非零的 f ∈ X∗使得 f(M) = {0}（或者说
M = X 当且仅当 f ∈ X∗, f(M) = 0⇒ f = 0）.

证明 若M 6= X，则存在 x0 /∈M，根据 Ascoli定理，存在 f ∈ X∗, r ∈ R使得 sup
x∈M

f(x) < r < f(x0)，而M 为

向量空间说明 f |M = 0，因此 f(M) = 0但 0 < r < f(x0)说明 f 6= 0.

推论 2.11 (Mazur)

♥

设X为实赋范空间，C为开凸集，F 为线性子流形（子空间的平移），C∩F = ∅，则存在闭超平面Hr
f ⊃ F

且分离 C,F（sup
x∈C

f(x) ⩽ r）.

证明 设 F =M + x0，M 为子空间，则由凸集分离定理，存在 f ∈ X∗, s ∈ R使得

sup
x∈C

f(x) ⩽ s ⩽ inf
y∈F

f(y) = inf
y∈M

f(y) + f(x0)⇒ inf
y∈M

f(y) ⩾ s− f(x0)⇒ f(M) = 0, (2.88)

因此M ⊂ H0
f , F ⊂ Hr

f，其中 r = f(x0)满足要求.

定义 2.15 (承托超平面)

♣
称 L = Hr

f 是凸集 C 在 x0 处的承托超平面，若 C 完全落在 L的一侧且 x0 ∈ L ∩ C.

定理 2.22

♥设 X 为实赋范空间，C 为有内点的闭凸集，则对任意 x0 ∈ ∂C，都有 C 在 x0 处的承托超平面.

证明 令开凸集 E = C◦，F = {x0}为零维线性子流形，则由Mazur定理，存在 f ∈ X∗, r ∈ R使得 sup
x∈C

f(x) ⩽

r = f(x0)或 inf
x∈C

f(x) ⩾ r = f(x0)，因此 Hr
f 是 C 在 x0 处的承托超平面.

2.5.3 一些应用

命题 2.14 (绝对收敛级数的重排定理)

♠
设 X 为赋范空间，

∑∞
k=1 xk 是 X 中绝对收敛级数，{yk}为 {xk}的重排，则

∑∞
k=1 yk =

∑∞
k=1 xk.

证明 对任意 f ∈ X∗，

∣∣∣∣ ∞∑
k=1

f(xk)

∣∣∣∣ ⩽ ||f || ∞∑
k=1

||xk|| <∞，即为绝对收敛的数项级数，因此重排不变：

∞∑
k=1

f(xk) =

∞∑
k=1

f(yk)⇒ f

( ∞∑
k=1

yk

)
= f

( ∞∑
k=1

xk

)
, (2.89)

根据 Hahn-Banach定理可知
∑∞

k=1 yk =
∑∞

k=1 xk（否则存在 f ∈ X∗ 在二者处取不同值）.

定义 2.16 (Frechet可微)
设 X 为赋范空间，对于 f : (a, b)→ X 和 t0 ∈ (a, b)，若存在 y ∈ X 使得

lim
h→0

∣∣∣∣∣∣∣∣f(t0 + h)− f(t0)
h

− y
∣∣∣∣∣∣∣∣ = 0, (2.90)
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♣
则称 f 在 t0 处 Frechet可微，y := f ′(t0)称为 f 在 t0 处的 Frechet导数.

定理 2.23 (拟微分中值定理)

♥

设 f : (a, b)→ X 上 Frechet可微，则对任意 t1, t2 ∈ (a, b)，存在 θ ∈ (0, 1)使得

||f(t2)− f(t1)|| ⩽ ||f ′(θt1 + (1− θ)t2)|| |t2 − t1|. (2.91)

证明 设 F ∈ X∗ 满足 ||F || = 1, F (f(t2) − f(t1)) = ||f(t2) − f(t1)||，令 ϕ(η) = F (f(t1 + η(t2 − t1)))，则它在
[0, 1]连续，在 (0, 1)可微，并且

ϕ′(η) = F (f ′(t1 + η(t2 − t1))(t2 − t1)), (2.92)

根据微分中值定理可得存在 θ ∈ (0, 1)使得

||f(t2)− f(t1)|| = ϕ(1)− ϕ(0) = ϕ′(θ) = F (f ′(θ(t2 − t1))(t2 − t1)) ⩽ ||f ′(θt1 + (1− θ)t2)|| |t2 − t1|. (2.93)

2.6 对偶空间 (共轭空间)
对于赋范空间X，其上所有连续线性泛函的全体X∗称为X 的对偶空间.若H 为 Hilbert空间，则 Riesz表

示定理说明 H∗ = H，因为存在对应

y ←→ fy, (2.94)

其中 fy(x) = 〈x, y〉，并且这是一个线性等距同构（进一步可由该同构定义出 H∗ 中的内积）. 对于空间 Lp =

Lp(Ω,M, µ)，其对偶空间有如下结论：

定理 2.24 (Riesz)

♥

设 (X,Ω, µ) 为测度空间，1 < p < ∞，则 (Lp)∗ = Lq，其中 1
p + 1

q = 1，并且当测度 µ 为 σ-有限时，
(L1)∗ = L∞.即

1. 对任意 g ∈ Lq，定义 Λg(f) :=
∫
fg，则 ||Λg|| = ||g||q .

2. 对任意 Λ ∈ (Lp)∗，存在 g ∈ Lq 使得 Λ = Λg .
或者说 J : Lq → (Lp)∗, g 7→ Λg 是线性等距同构.

注这里的 p, q称为共轭指标，并且当 p = 1时 q =∞.
证明 【Part 1范数相等】

1. 若 1 < p <∞，则对任意 g ∈ Lq，由 Holder不等式可得

|Λg(f)| =
∣∣∣∣∫ fg

∣∣∣∣ ⩽ ||g||q||f ||p ⇒ ||Λg|| ⩽ ||g||q. (2.95)

令 f̃ = sgn (g)|g|q−1，则 ||f ||pp = ||g||qq <∞, f ∈ Lp，并且

Λg(f̃) =

∣∣∣∣∫ f̃g

∣∣∣∣ = ∫ |g|q = ||g||qq ⇒ ||Λg|| ⩾
|Λg(f̃)|
||f ||p

= ||g||q, (2.96)

因此 ||Λg|| = ||g||q .
2. 若 p = 1，则对任意 g ∈ L∞ 有

|Λg(f)| =
∣∣∣∣∫ fg

∣∣∣∣ ⩽ ||g||∞||f ||1 ⇒ ||Λg|| ⩽ ||g||∞. (2.97)

根据本性上确界定义，对任意 n ∈ N 取 An ⊂ {|g| > ||g||∞ − 1
n} 使得 µ(An) ∈ (0,∞)，令 fn =

1
µ(A) sgn (g)χAn

则 ||fn||1 = 1且

||Λg|| ⩾ |Λg(fn)| =
1

µ(A)

∫
An

|g|dµ ⩾ ||g||∞ −
1

n
, (2.98)
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由 n的任意性即得.
【Part 2存在性】只考虑 Ω = [0, 1], µ = m，对任意 Λ ∈ (Lp)∗，构造 g ∈ Lq 使得 Λ = Λg .
STEP 1.令 G(t) = Λ(χ[0,t]), t ∈ [0, 1]，断言 G绝对连续，则存在 g ∈ L1 使得

G(t) =

∫ t

0

g(s)ds⇒ Λ(χ[0,t]) =

∫
χ[0,t]g. (2.99)

对任意 ε > 0，令 δ =
(

ε
||Λ||

)p
，对任意无交区间 (ak, bk) ⊂ [0, 1], 1 ⩽ k ⩽ N,

∑N
i=1 |bk − ak| < δ，有

N∑
i=1

|G(bi)−G(ai)| =
N∑
i=1

|Λ(χ(ai,bi))| ⩽ ||Λ||
N∑
i=1

||χ(ai,bi)||p. (2.100)

令 f =
∑N

k=1 sgn (G(bk)−G(ak))χ[ak,bk]，则 ||f ||pp ⩽
∑N

k=1(bk − ak) < ε并且

N∑
k=1

|G(bk)−G(ak)| = Λ(f) ⩽ ||Λ|| ||f ||p ⩽ ||Λ||δ 1
p = ε. (2.101)

因此
N∑

k=1

|G(bk)−G(ak)| ⩽ ||Λ|| ||f ||p ⩽ ||Λ||δ 1
p = ε. (2.102)

说明 G ∈ AC[0, 1].
因此存在 g，对任意阶梯函数 f 都有 Λ(f) =

∫
fg.

STEP 2.证明上面的 g ∈ Lq（使用后面的引理）.
对任意 f ∈ L∞[0, 1]，设M = ||f ||∞+1，则存在阶梯函数 {ϕn}使得 ϕn

a.e.→ f, ||ϕ||∞ ⩽M .因此 |f −ϕn|p ⩽
(2M)p，由 DCT可得

|Λ(f)− Λ(ϕn)| ⩽ ||Λ|| ||f − ϕn||p → 0⇒ Λ(f) = lim
n→∞

Λ(ϕn), (2.103)

由于 |ϕng| ⩽M |g|，再用 DCT可得∫
fg = lim

n→∞

∫
ϕng = lim

n→∞
Λ(ϕn) = Λ(f)⇒ ||fg||1 ⩽ ||Λ|| ||f ||p, (2.104)

根据引理有 g ∈ Lq，得证.
Step 3.证明对任意 f ∈ Lp 都有 Λ(f) =

∫
fg.

对任意 f ∈ Lp, ε > 0，存在阶梯函数 ϕ使得 ||f − ϕ||p ⩽ ε
2(||Λ||+||g||q) ,因此∣∣∣∣Λ(f)− ∫ fg

∣∣∣∣ ⩽ |Λ(f)− Λ(ϕ)|+
∣∣∣∣Λ(ϕ)− ∫ ϕg

∣∣∣∣+ ∣∣∣∣∫ ϕg −
∫
fg

∣∣∣∣ (2.105)

⩽ ||Λ|| ||f − ϕ||p + ||g||q||f − ϕ||p (2.106)

⩽ ε. (2.107)

引理 2.4

♥
设 g ∈ L1，若存在 C > 0使得 ||fg||1 ⩽ C||f ||p, ∀f ∈ L∞，则 g ∈ Lq 且 ||g||q ⩽ C.

证明

1. 若 1 < p <∞，令 gn = gχ{|g|⩽n}, fn = sgn (g)|g|q−1，则 fn ∈ L∞, ||fn||pp = ||gn||qq，并且 fng = fngn = |gn|q，
积分可得

||gn||qq =

∣∣∣∣∫ fng

∣∣∣∣ ⩽ C||fn||p = C||gn||
q
p
q ⇒ ||gn||q ⩽ C, (2.108)

由 Fatou引理 ∫
|g|q ⩽ lim inf

n→∞

∫
|gn|q ⩽ Cq ⇒ ||g||q ⩽ C. (2.109)

2. 若 p =∞，令
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定理 2.25

♥
L1 ⊊ (L∞)∗.

证明 首先对任意 g ∈ L1 有 |Λg(f)| ⩽ ||g||1||f ||∞，因此 Λg ∈ (L∞)∗.
下证对于某个 Λ ∈ (L∞)∗，不存在 g ∈ L1 使得 Λ = Λg .考虑闭子空间 C[0, 1] ⊊ L∞，取 f0 ∈ L∞\C[0, 1]，

则 d(f0, C[0, 1]) > 0，由 Hahn-Banach定理，存在 Λ ∈ (L∞)∗, ||Λ|| = 1使得 Λ(C[0, 1]) = {0}且 Λ(f0) = d.
假设命题不成立，则存在 g ∈ L1 使得 Λ(f) =

∫
fg，因此对任意 f ∈ C[0, 1]有

∫
fg = 0.取一列连续函数

{fn}使得 ||fn − sgn (g)||1 → 0，则 {fn}有几乎处处收敛子列 fnk
，由 DCT可得∫

|g| = lim
n→∞

∫
fnk

g = 0, (2.110)

因此 g = 0, a.e.，Λ = 0, a.e.，与 Λ(f0) = d矛盾.

¶连续函数空间的对偶

定义 2.17 (有界变差函数空间)

♣
设 BV [a, b] = {f :

∨b
a(f) <∞}，其中可定义范数 ||f ||BV = |f(a)|+

∨b
a(f).

命题 2.15

♠
(BV [a, b], || · ||BV )是 Banach空间.

证明 注意到
∨b

a(f + g) ⩽
∨v

a(f) +
∨b

a(g)，只需证明 BV [a, b]中的绝对收敛级数收敛即可.
定义 BV [a, b]的子空间 BV0[a, b]为 (a, b)上的右连续函数，且满足 f(a) = 0，则 BV0[a, b]是 BV [a, b]的闭

子空间.

定义 2.18 (Riemann-Stieltjes积分)

♣

设 f, g为 [a, b]上的函数，对分割 π : a = t0 < · · · < tn = b以及 ξk ∈ [tk−1, tk]，定义

σ(π, ξ) =

n∑
i=1

f(ξi)[g(tk)− g(tk−1)], (2.111)

若存在 I ∈ R使得 |σ(π, ξ)− I| → 0(||π|| → 0)，则称 f 关于 g是 Riemann-Stieltjes可积的，记 I =
∫ b

a
fdg

为 f 关于 g的 Riemann-Stieltjes积分.

定理 2.26 (Riesz)

♥

C[a, b]∗ = BV0[a, b]，即

1. 对任意 g ∈ BV0[a, b]，Λg(f) :=
∫ b

a
fdg, ∀f ∈ C[a, b]，则 Λg ∈ C[a, b]∗ 且 ||Λg|| = ||g||BV .

2. 对任意 Λ ∈ C[a, b]∗，存在唯一 g ∈ BV0[a, b]使得 Λ = Λg .

注对于一般的紧度量空间（或者说 LCH空间），有 C(K)∗ =M(K) = {复 Baire测度}，对应为 Λµ(f) =
∫
fdµ.

2.6.1 自反空间

定义 2.19 (二次对偶空间)

♣

对于赋范空间 X，X∗ 是 Banach空间，定义 X∗∗ := (X∗)∗ = L(X∗,F)为 X 的二次对偶空间（或第二共

轭空间）.
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对任意 x ∈ X，可自然诱导线性泛函 x∗∗，使得对任意 f ∈ X∗ 有 x∗∗(f) = f(x)，并且一方面

|x∗∗(f)| = |f(x)| ⩽ ||x|| ||f || ⇒ ||x∗∗|| ⩽ ||x||, (2.112)

另一方面由 Hahn-Banach定理，存在 f0 ∈ X∗, ||f0|| = 1使得 x∗∗(f0) = f0(x) = ||x||，因此 x∗∗ ∈ X∗∗, ||x∗∗|| =
||x||.这说明 X 可以等距嵌入到 X∗∗ 中，称嵌入 ι为自然映射（或典则嵌入）.

定义 2.20 (自反)

♣若自然映射 ι是满射，则称 X 自反，记 X∗∗ = X .

注这里的等号要求等距同构必然是 ι，另外存在 Banach空间 X 使得 X 与 X∗∗ 等距同构但 X 不自反.
例 2.8

自反空间必然完备.
有限维赋范空间都是自反的.
Hilbert空间是自反的.

定理 2.27

♥当 p > 1时，Lp 是自反的.

证明 只需证明对任意 Λ ∈ (Lp)∗∗，存在 u ∈ Lp 使得 Λ(f) = f(u), ∀f ∈ (Lp)∗. 设 J : Lq → (Lp)∗, J(v) =

fv, J
−1(f) = vf，则 Λ ◦ J ∈ (Lq)∗，因此存在唯一 u ∈ Lp 使得 (Λ ◦ J)(v) =

∫
uv, ∀v ∈ Lq，由此可得

Λ(f) = Λ(J(vf )) =

∫
uvf = f(u). (2.113)

定理 2.28

♥
C[a, b]不自反.

证明 若不然，则对任意 Λ ∈ C[a, b]∗∗，存在 u ∈ C[a, b] 使得 Λ(f) = f(u), ∀f ∈ C[a, b]∗，但由于 C[a, b]∗ =

BV0[a, b]，因此对任意 f ∈ C[a, b]∗，存在唯一 vf ∈ BV0[a, b]使得 f(u) =
∫ b

a
udvf 且 ||vf ||BV = ||f ||.

令 c = a+b
2 ，考虑 Fc ∈ C[a, b]∗∗ 使得（|Fc(f)| ⩽

∨b
a(vf ) = ||vf ||BV = ||f || ⇒ Fc ∈ C[a, b]∗∗）

Fc(f) = vf (c+ 0)− vf (c− 0), (2.114)

根据假设，存在 uc ∈ C[a, b] 使得 Fc(f) = f(uc) =
∫ b

a
ucdvf，令 v(t) =

∫ t

a
uc(s)ds, v ∈ BV0[a, b]，再令 fv =

J(v) ∈ C[a, b]∗，则 vf 在 c处连续说明

0 = Fc(fv) =

∫ b

a

ucdv =

∫ b

a

u2cdt⇒ uc = 0, Fc = 0, (2.115)

矛盾（很容易找到在 c处不连续的函数 g使得 Fc(g) 6= 0）.

定理 2.29 (Banach)

♥若 X∗ 可分，则 X 可分.

注反之不成立，L1 可分但 L∞ 不可分.
证明 【STEP 1.证明 X∗ 中单位球面 S∗

1 可分】

设 {fn}为X∗中的可数稠密子集（不妨设 fn 6= 0, ∀n ∈ N），令 gn = fn
||fn||，则对任意 g ∈ S∗

1，存在 fnk
→ g，

而

||g − gnk
|| ⩽ ||g − fnk

||+ ||fnk
− gnk

|| = ||g − fnk
||+

∣∣||fnk
|| − 1

∣∣→ 0, (2.116)

因此 {gn}为 S∗
1 中的可数稠密子集.

【STEP 2.证明存在 {xn : n ∈ N}, ||xn|| = 1使得 Span(xn : n ∈ N) = X】

由于 ||gn|| = 1，因此存在 xn ∈ X, ||xn|| = 1使得 gn(xn) >
1
2，令M = Span(xn : n ∈ N)，下证M = X .
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2.6 对偶空间 (共轭空间)

若不然，则存在 x0 ∈ X\M，因此存在 f ∈ X∗, ||f || = 1 使得 f(M) = 0, f(x0) = d(x0,M) > 0. 对任意
n ∈ N有

||gn − f || ⩾ |gn(xn)− fn(xn)| = |gn(xn)| >
1

2
, (2.117)

与 {gn}的稠密性矛盾.
【STEP 3.证明 SpanQ(xn : n ∈ N)是 X 的稠密子集（可数性显然）】

显然 SpanQ(xn : n ∈ N)在 Span(xn : n ∈ N)中稠密，而后者在 X 中稠密，得证.

定理 2.30

♥
当 1 ⩽ p <∞时，Lp[0, 1]可分.

证明 直接构造其可数稠密子集： {
2n−1∑
k=0

rkχ[ k
2n , k+1

2n ) : rk ∈ Q, n ∈ N

}
, (2.118)

显然它们可以逼近任意阶梯函数，仿照 L1 中阶梯函数稠密性可知 Lp 中阶梯函数可以逼近可积简单函数，对任

意 f ∈ Lp，首先存在简单函数列 ϕn
a.e.→ f, |ϕn| ⩽ |f |，因此 ||ϕn||p ⩽ ||f ||p <∞说明 ϕ ∈ Lp，并且由 DCT可得

|ϕn − f |p ⩽ |2f |p ⇒
∫
|ϕn − f |p → 0, (2.119)

因此可积简单函数在 Lp 中稠密，故上面的集合是 Lp 的稠密子集.

定理 2.31

♥
L∞ = L∞[0, 1]不可分.

证明 若 L∞ 有可数稠密子集 {fn}，则对任意 χ[0,t]，存在 fnt
∈ B(χ[0,t],

1
3 )，而当 t 6= s时 d(χ[0,t], χ[0,s]) = 1，

因此 B(χ[0,t],
1
3 )互不相交，故 (0, 1)→ N, t 7→ nt 是单射，与可数性矛盾.

推论 2.12

♥L1 不是自反的.

证明 若 L1 自反，则 L1 = (L1)∗∗ = (L∞)∗ 可分，因此 L∞ 可分，矛盾.

2.6.2 共轭算子

引理 2.5

♥

设 X,Y 为赋范空间，则对任意 T ∈ L(X,Y )，存在 T ∗ ∈ L(Y ∗, X∗)，使得对任意 f ∈ Y ∗ 有 (T ∗f)(x) =

(f ◦ T )(x)，并且共轭算子 ∗ : L(X,Y )→ L(Y ∗, X∗), T 7→ T ∗ 是一个线性等距嵌入.

证明 对任意 f ∈ Y ∗，定义线性算子 Λf = f ◦ T : X → F，则 ||Λf || ⩽ ||f || ||T ||，再定义线性映射 T ∗ : Y ∗ →
X∗, f 7→ Λf，则

||T ∗f || = ||Λf || ⩽ ||T || ||f || ⇒ ||T ∗|| ⩽ ||T ||. (2.120)

对任意 x ∈ X（不妨设 Tx 6= 0），由 Hahn-Banach定理，存在 f ∈ Y ∗, ||f || = 1使得 f(Tx) = ||Tx||，因此

||Tx|| = |f(Tx)| = ||(T ∗f)(x)|| ⩽ ||T ∗f || ||x|| ⇒ ||T || ⩽ ||T ∗f || ⩽ ||T ∗||. (2.121)

故 ||T || = ||T ∗||，因此 ∗是线性等距.

定理 2.32 (Pettis)

♥自反空间的闭子空间自反.
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2.7 弱收敛与弱 *收敛

证明 设 X 自反，Y 为其闭子空间，只需证明对任意 Λ ∈ Y ∗∗，存在 y ∈ Y 使得 Λ(f) = f(y), ∀f ∈ Y ∗.定义限
制算子 T : X∗ → Y ∗, f 7→ f |Y，则 T ∗ ∈ L(Y ∗∗, X∗∗)，设 T ∗(Λ) = y∗∗ ∈ X∗∗ = X，断言 y ∈ Y，若不然则存
在（因为 Y 闭）f̃ ∈ X∗, f̃(Y ) = 0, f̃(y) = d(y, Y ) > 0，而 f̃(Y ) = 0说明 T (f̃) = f |Y = 0，因此

0 = Λ(T (f̃)) = (T ∗Λ)(f̃) = y∗∗(f̃) = f̃(y) > 0, (2.122)

矛盾.因此对任意 f ∈ Y ∗，设 F 为其到 X∗ 上的保范延拓则有

Λ(f) = Λ(T (F )) = y∗∗(F ) = F (y) = f(y), (2.123)

得证.
注证明过程实际上是将 Λ通过限制算子拉回到 X∗∗ 中讨论.

2.7 弱收敛与弱 *收敛

¶弱收敛与弱 *收敛

定义 2.21 (弱收敛)

♣

设 X 为赋范空间，称 {xn : n ∈ N} ⊂ X 弱收敛到 x0 ∈ X，若对任意 f ∈ X∗ 有 f(xn) → f(x0)，记为

xn
w→ x0，x0 称为 {xn}的弱极限.

注与之对照，强收敛即为一般的依范数收敛，并且显然强收敛更强.
例 2.9强收敛强于弱收敛 设 X = L2(S1), ek(t) = e−2πikt, ||ek|| = 1，对任意 f ∈ X∗，存在 v ∈ L2(S1)使得

f(u) =
∫
uv，由 Riemann-Lebesgue引理有

f(en) = v̂(n)→ 0, n→∞,

即 en
w→ 0，但显然 en 6→ 0.

定理 2.33 (有限维空间中的强弱收敛等价)

♥若 X 是有限维赋范空间，则其中的弱收敛与强收敛等价.

证明 设 {e1, · · · , em}是X 的一组基，{e1, · · · , em}是它的对偶基，则 xn
w→ x0当且仅当每个 ek(xn)→ ek(x0)，

因此

xn =

m∑
i=1

ei(xn)ei →
m∑
i=1

ei(x0)ei = x0,

定理 2.34 (Mazur)

♥
若 xn

w→ x0，则 x0 ∈ conv(xn : n ∈ ∞).

证明 令 C = x0 ∈ conv(xn : n ∈ ∞)，若 x0 /∈ C，则由 Ascoli定理，存在 f ∈ X∗, α ∈ R使得

sup
x∈C

f(x) < α < f(x0)⇒ f(xn) < α < f(x0), ∀n ∈ N,

因此 f(xn) 6→ f(x0)，矛盾.
在对偶空间中，有与弱收敛很像的另一种收敛.

定义 2.22 (弱 *收敛)

♣
若对任意 x ∈ X 有 fn(x)→ f(x)，则称 {fn : n ∈ N} ⊂ X∗ 弱 *收敛到 f ∈ X∗，记为 fn

w∗

→ f .

39



2.7 弱收敛与弱 *收敛

命题 2.16 (三种收敛性的关系)

♠在 X∗ 中，强收敛⇒弱收敛⇒弱 *收敛.

证明 若 fn
w→ f，则对任意 Λ ∈ X∗∗ 有 Λ(fn)→ Λ(f)，特别对任意 x ∈ X 有

fn(x) = x∗∗(fn)→ x∗∗(f) = f(x)⇒ fn
w∗

→ f.

借助相同的过程可得

命题 2.17 (自反空间中的收敛等价性)

♠若 X 自反，则 X∗ 中弱收敛与弱 *收敛等价.

定理 2.35 (弱收敛的等价刻画)

♥
xn

w→ x0 当且仅当 supn ||xn|| <∞，并且存在 X∗ 的稠密子空间 F 使得 f(xn)→ f(x0), ∀f ∈ F .

注这一表述与 Banach-Steinhaus定理类似.
证明 xn

w→ x0 当且仅当对任意 f ∈ X∗ 有 f(xn) → f(x)，也即 x∗∗n (f) → x∗∗0 (f)，由于 X∗ 完备，因此由

Banach-Steinhaus定理，这当且仅当 supn ||xn|| = supn ||x∗∗n || < ∞且存在稠密子空间 F ⊂ X∗ 使得 x∗∗n (f) →
x∗∗0 (f), ∀f ∈ F，即 f(xn)→ f(x0), ∀f ∈ F .

¶弱列紧与弱 *列紧

定义 2.23 (弱列紧 &弱 *列紧)

♣

称M ⊂ X 弱列紧，若M 中任意序列都有弱收敛子列.
称 F ⊂ X∗ 弱 *列紧，若 F 中任意序列都有弱 *收敛子列.

虽然一般空间中的单位闭球非紧，但可以证明其对偶空间中的单位闭球是弱 *紧的.

定理 2.36 (Alaoglu)

♥设 X 为赋范空间，则 X∗ 中单位闭球是弱 *紧的.

注证明见附录.

定理 2.37 (可分 Banach-Alaoglu定理)

♥若 X 可分，则 X∗ 中的有界集是弱 *列紧的.

证明 设 {xn} ⊂ X 为可数稠密子集，{fn} ⊂ X∗有界，记 C = supn ||fn|| <∞，则对任意m，{fn(xm) : n ∈ N}
为有界数列，依次有收敛子列 {fnmj (xm) : j ∈ N}, ∀m ∈ N（先取子列，再取子列的子列，以此类推），抽对角
线 {fnmm(xm) : m ∈ N}，断言 ∃f ∈ X∗, fnmm

w→ f，重新编号 fnm := fnmm .
对任意 x ∈ X，存在 xm 使得 ||x− xm|| < ε/3C，当 k充分大时任意 fnk+p

(xm)→ fnk+p
(x)，因此

|fnk+p
(x)− fnk

(x)| ⩽ |fnk+p
(x)− fnk+p

(xm)|+ |fnk+p
(xm)− fnk

(xm)|+ |fnk
(xm)− fnk

(x)|

⩽ C||x− xm||+
ε

3
+ C||x− xm||

< ε,

因此 {fnk
(x)}为 Cauchy列，记 f 为其逐点极限，则 fnk

w∗

→ f，并且

|f(x)| ⩽ sup
n
|fn(x)| ⩽ C||x|| ⇒ f ∈ X∗,

得证.
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2.8 谱理论

引理 2.6 (弱收敛极限的上界)

♥

设赋范空间 X 中 xn
w→ x0，则

||x0|| ⩽ lim inf
n→∞

||xn||.

证明 xn
w→ x0 说明对任意 f ∈ X∗ 有 f(xn) → f(x0). 由于 ||x|| = sup||f ||=1 |f(x)|，因此对任意 ε，存在

f ∈ X∗, ||f || = 1使得 ||x0|| ⩽ |f(x0)|+ ε，并且当 n充分大时有

|f(xn)− f(x0)| < ε⇒ |f(x0)| ⩽ |f(xn)|+ ε,

因此 ||x0|| ⩽ |f(x0)|+ ε ⩽ |f(xn)|+ 2ε ⩽ ||xn||+ 2ε，取下极限可得

||x0|| ⩽ lim inf
n→∞

||xn||+ ε⇒ ||x0|| ⩽ lim inf
n→∞

||xn||.

定理 2.38 (Eberlein-Smulian)

♥

若 X 为自反空间，则

1. X 中有界集是弱列紧的.
2. X 中单位闭球是弱自列紧的.

证明

1. 只需证明对任意 R > 0，B(0, R)是弱列紧的.设 {xn} ⊂ X, ||xn|| ⩽ R，记 Y = Span(xn : x ∈ N)，则 Y

可分，并且 X 的自反性蕴含了闭子空间 Y 的自反性（Petti），进而⇒ Y ∗∗ = Y 可分⇒ Y ∗ 可分，由可

分 Banach-Alaoglu定理，Y ∗∗ 中的有界集是弱 *列紧的，||x∗∗n || = ||xn|| ⩽ R说明 {x∗∗n }有弱 *收敛子列
x∗∗nk

w∗

→ x∗∗0 ∈ Y ∗∗，即对任意 f ∈ Y ∗ 有

f(xn) = x∗∗n (f)→ x∗∗0 (f) = f(x0),

对任意 F ∈ X∗，F (xnk
) = F |Y (xnk

)→ F |Y (x0) = F (x0)，因此 xnk

w→ x0，得证.
2. 设 x0 为其某个子列的收敛极限，则

||x0|| ⩽ lim inf
k→∞

||xnk
|| ⩽ 1⇒ x0 ∈ B(0, 1).

2.8 谱理论
设 X 为（复）Banach空间，本节将讨论闭算子 A : D(A) ⊂ X → X 的谱，首先给出定义：

定义 2.24 (谱集 &预解集)

♣

对任意闭线性算子 A : D(A) ⊂ X → X，定义其预解集为（其中元素称为 A的正则值）

ρ(A) := {λ ∈ C : (λI −A)−1 ∈ L(X)},

其补集 σ(A) := C\ρ(A)称为 A的谱集（其中元素称为）

若 dimX <∞，则（不妨设A定义在X 上）σ(A)恰好对应其特征值的全体，因为此时单性与满性等价，且

任何线性变换都可逆. 但当 dimX =∞时情况会复杂很多，首先考虑引理：

引理 2.7

♥
设X为Banach空间，A : D(A) ⊂ X → X为闭算子，若 λI−A : D(A)→ X为双射，则 (λI−A)−1 ∈ L(X).
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2.8 谱理论

证明 首先易证闭算子与有界线性算子的和还是闭算子，进一步若yn → y,

(λI −A)−1yn := xn → x
⇒

xn → x,

(λI −A)xn = yn → y

则根据 λI −A的闭性可得 x = (λI −A)−1y，故 (λI −A)−1为闭算子，由闭图像定理可知 (λI −A)−1 ∈ L(X).
由此可知，σ(A)中的元素可以分为三类：

特征值 σp(A)：Ker (λI −A) 6= 0（即 λI −A不是单射）.
连续谱 σc(A)：Ker (λI −A) = 0,Ran(λI −A) 6= X,Ran(λI −A) = X（即像集不满，但稠密）.
剩余谱 σr(A)：Ker (λI −A) = 0,Ran(λI −A) 6= X（即像集不稠密）.

综上，有复平面的划分（无交并）C = ρ(A)∪ σp(A)∪ σc(A)∪ σr(A)，后面会看到一些例子，说明这三种情形都
是有可能出现的.

下面讨论闭算子的谱.

引理 2.8

♥

设 T ∈ L(X), ||T || < 1，则 (I − T )−1 ∈ L(X)且有显式表达（von Neumann级数）以及范数的控制：

(I − T )−1 =

∞∑
n=0

Tn, ||(I − T )−1|| ⩽ 1

1− ||T ||

注对于一般的 Banach代数也有类似结论.
证明 令 Sn =

∑n
k=0 T

n，仿照几何级数的讨论可知 {Sn}为 Cauchy列，故极限 S =
∑∞

n=0 T
n ∈ L(X). 另一方

面 (I − T )Sn = I − Tn+1 → I，因此 (I − T )−1 = S =
∑∞

n=0 T
n，最后的估计是容易的.

定理 2.39 (预解集的开性与谱集的紧性)

♥

设 A : D(A) ⊂ X → X 为闭算子，则

(1) ρ(A) ⊂ C为开集.
(2) σ(A) ⊂ B(0, ||A||)，特别地，σ(A)为紧集.

证明 (1)设 λ0 ∈ ρ(A)，则对任意 λ ∈ C，只要 |λ− λ0| < ||(λ0I −A)−1||−1 就有

λI −A = (λ0I −A)[I + (λ− λ0)(λ0I −A)−1],

即 λI −A可逆.
(2)对任意 |λ| > ||A||有 ||A/λ|| < 1，故 λI −A = λ(I −A/λ)可逆，即得 σ(A) ⊂ B(0, ||A||). 由此可得 σ(A)

为有界闭集，从而为紧集.

¶算子的谱半径

定义 2.25 (预解式)

♣

设 A : D(A) ⊂ X → X 为闭算子，定义其预解式为算子值函数

Rλ(A) : ρ(A)→ L(X), λ 7→ (λI −A)−1.

定义 2.26 (算子值函数的全纯)

♣

设 X 为 Banach空间，Ω ⊂ C为区域，称 T : Ω→ L(X)在 λ0 ∈ C处全纯，若存在 Sλ0
∈ L(X)使得

lim
z→0

∣∣∣∣∣∣∣∣Tλ0+z − Tλ0

z
− Sλ0

∣∣∣∣∣∣∣∣ = 0. (2.124)
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2.8 谱理论

引理 2.9 (第一预解公式)

♥
设 λ, µ ∈ ρ(A)，则 Rλ(A)−Rµ(A) = (µ− λ)Rλ(A)Rµ(A).

证明 Rλ(A) = (λI −A)−1[(λI −A) + (µ− λ)I](µI −A)−1 = Rµ(A) + (µ− λ)Rλ(A)Rµ(A).

定理 2.40 (预解式的全纯性)

♥
预解式 λ 7→ Rλ(A)在 ρ(A)上全纯.

注事实上，后面的证明只需要其“弱解析性”（复合任意 f ∈ (L(X))∗ 后全纯）即可.
证明 首先证明连续性，设 λ0 ∈ ρ(A)，当 |λ− λ0| < 1

2 ||Rλ0
(A)||−1 时就有 λ ∈ ρ(A)以及

λI −A = (λ0I −A)[I + (λ− λ0)(λ0I −A)−1],

从而 [I + (λ− λ0)Rλ0(A)]
−1 ∈ L(X)且有 Rλ(A) = [I + (λ− λ0)Rλ0(A)]

−1Rλ0(A)，由此可给出估计

||[I + (λ− λ0)Rλ0
(A)]−1|| ⩽ 1

1− 1
2

= 2⇒ ||Rλ(A)|| ⩽ 2||Rλ0
(A)||,

再借助第一预解公式可得

||Rλ(A)−Rλ0
(A)|| = |λ− λ0| · ||Rλ(A)Rλ0

(A)|| ⩽ 2||Rλ0
(A)||2|λ− λ0|,

即 Rλ(A)是 Lipschitz连续的.
全纯性同理（注意到 L(X)中乘法连续）：

lim
λ→λ0

Rλ(A)−Rλ0
(A)

λ− λ0
= − lim

λ→λ0

Rλ(A)Rλ0
(A) = −Rλ0

(A)2.

由此可证，有限线性算子的谱集必定非空.

定理 2.41 (Gelfand谱不空定理)

♥
设 X 为 Banach空间，若 0 6= A ∈ L(X)，则 σ(A) 6= ∅.

证明 若 σ(A) = ∅则 ρ(A) = C，此时 Rλ(A)为算子值整函数，对任意 f ∈ (L(X))∗，考虑整函数

uf : C→ C, λ 7→ f(Rλ(A)),

注意到当 |λ| > 2||A||时有

||Rλ(A)|| ⩽
1

|λ|
1

1− ||Aλ ||
<

1

||A||
⇒ |uf (λ)| ⩽ ||f || ||Rλ(A)|| <

||f ||
||A||

,

从而 uf 为有界整函数，由 Liouville 定理可知 uf 恒为常数，即对任意 µ, λ ∈ C, f ∈ (L(X))∗ 有 f(Rλ(A)) =

f(Rµ(A))，由 Hahn-Banach定理可得 Rλ(A) = Rµ(A)（否则可以被某个有界线性泛函分离），即 0 = Rλ(A) −
Rµ(A) = (λ− µ)Rλ(A)Rµ(A), ∀λ, µ ∈ C，这显然不可能.

定义 2.27 (有界线性算子的谱半径)

♣
对于 A ∈ L(X)，称 rσ(A) = sup{|λ| : λ ∈ σ(A)}为 A的谱半径.

注 σ的紧性 +非空保证了 rσ(A) < ||A|| <∞，即谱半径是良定的.
进一步可给出谱半径的精确表达：

定理 2.42 (Gelfand谱半径公式)

♥
设 X 为 Banach空间 A ∈ L(X)，则 rσ(A) = lim

n→∞
||An|| 1n .

证明 【Step 1.证明极限存在且等于 infn ||An|| 1n】
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2.8 谱理论

令 r = infn ||An|| 1n，则有

inf
n⩾k
||An|| 1n ⩾ inf

n
||An|| 1n ⇒ lim inf

n→∞
||An|| 1n ⩾ r,

由下确界的定义可知对任意 ε > 0，存在m ∈ N使得 ||Am|| 1m < r+ ε. 对任意 n ∈ N，作带余除法 n = pnm+ qn，

则有

||An|| 1n ⩽ ||Am||
pn
n ||A||

qn
n ⩽ (r + ε)

pnm
n ||A||

qn
n

⇒ lim sup
n→∞

||An|| 1n ⩽ r + ε ⩽ lim inf
n→∞

||An|| 1n + ε,

根据 ε任意性可知 lim
n→∞

||An|| 1n 存在且等于 r.

【Step 2.证明 rσ(A) ⩽ lim
n→∞

||An|| 1n】
考虑如下级数，由 Cauchy-Hadamard公式可得

∞∑
n=0

||An||zn ⇒ R =
1

lim sup
n→∞

||An|| 1n
=

1

lim
n→∞

||An|| 1n
,

因此当 |z| > limn→∞ ||An|| 1n 时该级数绝对收敛，并且被它控制的算子项级数
∑
znAn也收敛. 由此可知对任意

|λ| > limn→∞ ||An|| 1n 有（仿照 von Newmann级数的处理）

(λI −A)−1 =
1

λ
(I −A/λ)−1 =

∞∑
n=0

An

λn+1
,

因此 λ ∈ ρ(A)，故 rσ(A) ⩽ lim
n→∞

||An|| 1n .

【Step 3.证明 rσ(A) ⩾ lim
n→∞

||An|| 1n】
对任意 f ∈ (L(X))∗，考虑 ρ(A)上的全纯函数 uf (λ) = f(Rλ(A))，一方面它在 |λ| > rσ(A)上存在唯一的

Laurent展开，另一方面在 |λ| > lim
n→∞

||An|| 1n 上有

Rλ(A) =

∞∑
n=0

An

λn+1
⇒ f(Rλ(A)) =

∞∑
n=0

f(An)

λn+1
,

从而这就是它在 |λ| > rσ(A)上的 Laurent展开. 对任意 ε > 0，取 λ = rσ(A) + ε可得
∞∑

n=0

|f(An)|
(rσ(A) + ε)n+1

=

∞∑
n=0

|f(Tn)| <∞, Tn :=
An

(rσ(A) + ε)n+1
,

根据一致有界原理可知

sup
n
|f(Tn)| = sup

n
|T ∗∗

n (f)| <∞, ∀f ∈ (L(X))∗ ⇒ C := sup
n
||T ∗∗

n || = sup
n
||Tn|| <∞,

从而

||An|| 1n ⩽ C
1
n (rσ(A) + ε)

n+1
n ⇒ lim

n→∞
||An|| 1n ⩽ rσ(A) + ε,

由 ε任意性可知 rσ(A) ⩾ lim
n→∞

||An|| 1n .

¶一些例子

例 2.10设 A ∈ L(C[0, 1]), A(u(t)) = tu(t)，则 A无特征值.
例 2.11对于 A ∈ L(C[0, 1]), A(u(t)) = tu(t)有 σ(A) = σr(A) = [0, 1]（即所有谱都是剩余谱）.

对任意 λ ∈ C\[0, 1]，令

T : C[0, 1]→ C[0, 1], u(t) 7→ 1

λ− t
u(t), (2.125)

则 (λI −A)T = I = T (λI −A)，并且

||Tu|| ⩽ sup
t∈[0,1]

∣∣∣∣ 1

λ− t

∣∣∣∣ ||u|| ⇒ T ∈ L(C[0, 1]), (2.126)

因此 C\[0, 1] ⊂ ρ(A).

44



2.8 谱理论

另一方面对任意 λ ∈ [0, 1]，设 v(t) = (λI −A)u = (λ− t)v(t) ∈ Ran(λI −A)，由于 v(λ) = 0，因此常值函

数 1 /∈ Ran(λI −A)，即 Ran(λI −A) 6= X，因此 λ ∈ σr(A).
例 2.12设 A ∈ L(L2[0, 1]), A(u(t)) = tu(t)，则 σ(A) = σc(A) = [0, 1]（即所有谱都是连续谱）.
与上例类似可证 C\[0, 1] ⊂ ρ(A)，反过来对任意 λ ∈ [0, 1]，由于常值函数 1 /∈ Ran(λI − A)（否则存在

u ∈ L2[0, 1], (λ− t)u(t) = 1，矛盾），因此Ran(λI−A) 6= X，下证Ran(λI −A) = X，对任意 v ∈ L2[0, 1], ε > 0，

考虑

uε(t) =
v(t)

λ− t
χ[0,1]\(λ−ε,λ+ε)(t)⇒ (λI −A)uε = vχ[0,1]\(λ−ε,λ+ε)

L2

→ v, (2.127)

得证.
例 2.13右位移算子的谱 考虑右移位算子

A : `2 → `2, (x1, x2, · · · ) 7→ (0, x1, x2, · · · ), (2.128)

容易验证 ||A|| = 1，因此 rσ(A) = 1，即 σ(A) ⊂ D. 对任意 λ ∈ C有

(λI −A)(x1, x2, · · · ) = (λx1, λx2 − x1, λx3 − x2, · · · ), (2.129)

因此对任意 λ ∈ C有 Ker (λI −A) = {0}，说明 σp(A) = ∅.下面讨论剩余谱与连续谱.
σr(A) = D.只需证明D ⊂ σr(A)，即对任意 |λ| < D，证明 Ran(λI −A) 6= `2，由于 `2为 Hilbert空间，因
此这等价于 Ran(λI −A)⊥ 6= {0}.设 z = (1, λ̄, λ̄2, · · · ) ∈ `2，容易验证 〈(λI −A)x, z〉 = 0, ∀x ∈ `2.
σc(A) = ∂D.只需证明 ∂D ⊂ σc(A)，即对任意 |λ| = 1，证明

Ran(λI −A) 6= `2, Ran(λI −A) = `2, (2.130)

设 y = (λI −A)x，则y1 = λx1,

yk = λxk − xk−1,
⇒

y1 = λx1,

λk−1yk = λkxk − λk−1xk−1,
⇒

n∑
k=1

λk−1yk = λnxn, (2.131)

若 Ran(λI −A) = `2，取 y = e1 可得 λnxn = 1, ∀n ∈ N，因此

x = (
1

λ
,
1

λ2
, · · · ) /∈ `2, (2.132)

矛盾，故 Ran(λI−A) 6= `2.另一方面，设 z ∈ Ran(λI−A)⊥，即对任意 x有 〈(λI−A)x, z〉 = 0，取 x = en

可得 zn+1 = λ̄zn，因此 |zn+1| = |zn|，z ∈ `2 必有 z = 0，因此 Ran(λI −A)⊥ = {0}，得证.
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第 3章 紧算子

3.1 紧算子

定义 3.1 (紧算子)

♣
设X,Y 为赋范空间，若线性算子A : X → Y 将有界集映为列紧集，则称A为紧算子，记作A ∈ C(X,Y ).

命题 3.1 (紧算子的等价刻画)

♠

设 A : X → Y 线性，则下述等价：

(1) A为紧算子.
(2)对任意有界点列 {xn}，{Axn}有收敛子列.
(3) A将单位闭球 B 映为列紧集.
(4) A将单位球面 S1 映为列紧集.

注注意到度量空间中紧与自列紧等价，因此预紧与列紧等价，因此上述所有“列紧”都可以换成“预紧”.
证明 (1)⇔ (2)：显然.

(1)⇔ (3)：径向收缩.
(3)⇔ (4)：一边显然，设 {xn} ⊂ B（不妨设 inf ||Axn|| > 0），则可取子列 xnk

使得 ||xnk
|| → a,A(

xnk

||xnk
|| )→ y，

容易验证 Axnk
→ ay.

例 3.1紧算子的例子
恒同算子的紧性：I ∈ C(X)⇔ dimX <∞（考虑单位球面 S1）.
设K(−,−)在 [a, b]× [a, b]上连续，定义

T : C[a, b]→ C[a, b], (Tu)(s) =

∫ b

a

K(s, t)u(t)dt,

则 T 为紧算子.
设 F ⊂ C[a, b]有界，记M = supu∈F ||u|| <∞，则 supu∈F ||Tu|| ⩽M ||T || <∞说明 T (F)一致有界，下
证其等度连续.K 的连续性蕴含一致连续，即对任意 ε > 0，存在 δ > 0使得

sup
|s′−s′′|<δ

|K(s′, t)−K(s′′, t)| < ε

M(b− a)
,

因此只要 |s′ − s′′| < δ，就有

|(Tu)(s′)− (Tu)(s′′)| ⩽
∫ b

a

|K(s′, t)−K(s′′, t)| |u(t)|dt ⩽ ε

M(b− a)

∫ a

b

|u(t)|dt < ε,

因此由 Arzela-Ascolli引理，T (F)列紧.

3.1.1 紧算子的性质

定义紧算子时并没有要求其有界，因为这已经蕴含在其定义中.

命题 3.2

♠
设 X,Y 为赋范空间，则 C(X,Y )为 L(X,Y )的线性子空间.

证明 首先对任意 A ∈ C(X,Y )有（注意到函数 y 7→ ||y||连续）

sup
||x||=1

||Ax|| = sup
y∈A(S1)

||y|| = max{||y|| : y ∈ A(S1)} <∞,

因此 A ∈ L(X,Y )，线性性易证.



3.1 紧算子

在一些完备性条件下，可以证明 C(X,Y )还是一个闭子空间.

命题 3.3

♠
若 Y 完备，C(X,Y )为 L(X,Y )的闭子空间.

证明 设 {An} ⊂ C(X,Y ), ||An −A|| → 0，任取有界集M ⊂ X（记 C = sup
x∈M
||x|| <∞），只需证明 A(M)列紧，

也即其完全有界（完备性）. 对任意 ε > 0，存在 N 使得

||A−AN || <
ε

3C
,

AN (M)列紧说明存在 {x1, · · · , xm} ⊂M 使得

AN (M) ⊂
n⋃

k=1

B(Axk, ε/3),

即 {ANx1, · · · , ANxm}为 AN (M)的 ε/3-网. 对任意 x ∈M，存在 xk 使得 ||ANx−ANxk|| < ε/3，因此

||Ax−Axk|| ⩽ ||Ax−ANx||+ ||ANx−ANxk||+ ||ANxk −Axk|| < ε,

这说明 {Ax1, · · · , Axm}为 A(M)的 ε-网，即 A(M)完全有界，得证.
下述命题表明，紧算子有某种“理想”的性质.

命题 3.4 (紧算子与有界算子的复合)

♠

(1) ∀A ∈ C(X,Y ), T ∈ L(Y, Z), T ◦A ∈ C(X,Z).
(2) ∀T ∈ L(X,Y ), A ∈ C(Y, Z), A ◦ T ∈ C(X,Z).

证明 (1) {xn} ⊂ X 有界⇒ {Axn} ⊂ Y 有收敛子列 Axnk
→ y ⇒ T (Axnk

) = (T ◦ A)xnk
→ Ty，即 T ◦ A ∈

C(X,Z).
(2) {xn} ⊂ X 有界⇒ {Txn} ⊂ Y 有界⇒ {(A ◦ T )xn}有收敛子列，即 A ◦ T ∈ C(X,Z).

命题 3.5 (紧算子值域的可分性)

♠紧算子的值域可分.

证明 由于 Ran(A) =
⋃∞

n=1A(BX(0, n))，其中每个 A(BX(0, n))列紧⇒完全有界⇒可分，从而 Ran(A)可分.

命题 3.6 (紧算子的伴随)

♠
若 Y 完备，则 A ∈ C(X,Y )当且仅当 A∗ ∈ C(Y ∗, X∗).

证明 ⇒：任取有界序列 {fn} ⊂ Y ∗（设M = supn ||fn||），下证 {A∗fn}有收敛子列，记φn = fn|A(B1)
∈ C(A(B1))，

则

||A∗fn|| = sup
x∈B1

||A∗fn(x)|| = sup
y∈A(B1)

||fn(y)|| = sup
y∈A(B1)

||fn(y)|| = ||φn||C(A(B1))
,

因此等价于证明 {φn} ⊂ C(A(B1))有收敛子列，根据 Arzela-Ascolli引理，只需分别验证其（一致）有界与等度
连续.

一致有界：首先对任意 y ∈ A(B1)，取 {xn} ⊂ B1, Axn → y，则

||y|| ⩽ ||Axn − y||+ ||Axn|| ⩽ ||Axn − y||+ ||A|| ⇒ ||y|| ⩽ ||A||,

因此 ||φn||C(A(B1))
= sup

y∈A(B1)
||fn(y)|| ⩽M ||A||.

等度连续：注意到 |φn(y)− φn(z)| ⩽M ||y − z||.
⇐：由上文可知 A∗∗ ∈ C(X∗∗, Y ∗∗)，注意到对任意 x ∈ X, f ∈ Y ∗ 有

〈A∗∗x∗∗, f〉 = 〈x∗∗, A∗f〉 = A∗f(x) = f(Ax)⇒ ||A∗∗x∗∗||Y ∗∗ = ||Ax||Y ,

因此对任意有界点列 {xn} ⊂ X，{x∗∗n } ⊂ X∗∗ 有界（X ↪→ X∗∗ 为等距嵌入），从而 {A∗∗x∗∗n } ⊂ Y ∗∗ 有收敛子
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3.1 紧算子

列，这等价于 {Axn} ⊂ Y 有收敛子列.

¶全连续算子

定义 3.2 (全连续算子)

♣设 X,Y 为赋范空间，若线性算子 A : X → Y 将弱收敛序列映为（强）收敛序列，则称 A全连续.

定理 3.1 (紧性与全连续性)

♥

对于 A ∈ L(X,Y )有

(1)若 A紧，则 A全连续.
(2)若 A全连续且 X 自反，则 A紧.

注这一定理在 Hilbert空间上很有用.
证明 (1)若不然，则存在序列 xn

w→ x0, ||Axn−Ax0|| 6→ 0，即存在 ε0 > 0及子列 {xnk
}使得 ||Axnk

−Ax0|| ⩾ ε0.
但 xnk

w→ x0且弱收敛序列有界，因此 {Axnk
}有收敛子列（不妨设其自身收敛到 y），由 {xnk

}的弱收敛性，对
任意 f ∈ Y ∗ 有

f(Axnk
−Ax0) = (A∗f)(xnk

− x0)→ 0⇒ Axnk

w→ Ax0,

但已知 Axnk
→ y，故 Ax0 = y，这说明 Axnk

→ Ax0，矛盾. 故 A全连续.
(2)设 {xn} ⊂ X 有界，则X 自反说明其弱列紧（Eberlein-Smulian），即存在子列 xnk

w→ x0，由全连续可知

Axnk
→ Ax0，说明 {Axn}有收敛子列，即 A为紧算子.

¶有限秩算子

定义 3.3 (有限秩算子)

♣
设X,Y 为赋范空间，若线性算子A : X → Y 满足 dimR(A) <∞，则称之为有限秩算子，记作A ∈ F(X,Y ).

命题 3.7

♠
F(X,Y )为 C(X,Y )的线性子空间.

证明 设 A ∈ F(X,Y )，M ⊂ X 有界，则连续性说明 A(M) ⊂ Ran(A)有界，在有限维空间中这等价于列紧. 进
一步的线性性是显然的.
注这门课中的“自列紧集”对应一般的“列紧集”，因此在欧氏空间中列紧当且仅当有界.
由于当 Y 完备时 C(X,Y ) ⊂ L(X,Y )闭，因此有时为了证明一个算子是紧算子，可以考虑取一系列有限秩

算子来逼近它.
当 Y 完备时有

F(X,Y ) ⊂ C(X,Y ) = C(X,Y ) ⊂ L(X,Y ),

在一些特殊情形下，可以证明这里的包含实际上是相等.

命题 3.8 (Hilbert空间上的有限秩算子)

♠
设 H 为 Hilbert空间，则 F(H) = C(H).

证明 任取 T ∈ C(H), ε > 0，下面构造 Tε ∈ F(H)使得 ||T − Tε|| ⩽ ε.
T 紧说明 T (B(0, 1)) ⊂ H 紧，即其存在有限 ε/2-网 {y1, · · · , yn}，令 Eε = Span(y1, · · · , yn)，记 Pε 为 H

中到 Eε 的投影（dimEε < ∞说明 Pε ∈ F(H)），令 Tε := PεT ∈ F(H)，则对任意 x ∈ B(0, 1)，存在 yi 使得
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||Tx− yi|| < ε/2，从而

||Tx− Tεx|| = ||Tx− PεTx|| ⩽ ||Tx− yi||+ ||Pε(yi − Tx)|| ⩽ 2||Tx− yi|| < ε,

因此 ||T − Tε|| ⩽ ε，得证.
事实上，上述命题中“Hilbert空间”的条件还可以修改为“存在 Schauder基”.

定义 3.4 (Schauder基)

♣

设X为Banach空间，称 {en : n ∈ N} ⊂ X为其 Schauder基，若对任意 x ∈ X，存在唯一序列 {Cn(x)} ⊂ C
使得

x = lim
N→∞

N∑
n=1

Cn(x)en.

注显然具有 Schauder基的空间必可分.

引理 3.1

♥设 X 有 Schauder基，则定义中的 Cn ∈ X∗.

命题 3.9

♠
若 Banach空间 X 上有 Schauder基，则 F(X) = C(X).

证明 任取 T ∈ C(X)，记 Sn(x) =
n∑

i=1

Ci(x)ei，则由引理 +一致有界定理可知存在M 使得 supn ||Sn|| ⩽ M . 记

Tn = SnT ∈ F(X)，下证 Tn → T .
T 紧说明 T (B(0, 1)) ⊂ X 紧，即对任意 ε > 0，存在有限 ε

3(M+1) -网 {y1, · · · , ym}，由 Schauder基定义可知，
存在 N，使得对任意 n > N, i = 1, · · · ,m有 ||yi − Snyi|| < ε/3.
对任意 x ∈ X，存在 yi 使得 ||Tx− yi|| < ε

3(M+1)，从而对任意 n > N 有

||Tx− Tnx|| = ||Tx− SnTx|| ⩽ ||Tx− yi||+ ||yi − Snyi||+ ||Sn(yi − Tx)|| <
ε

3(M + 1)
+
ε

3
+

Mε

3(M + 1)
< ε,

从而 ||T − Tn|| ⩽ ε，即 Tn → T，得证.

3.2 紧算子的谱

3.2.1 Riesz-Fredholm理论

定理 3.2 (Riesz-Fredholm)

♥

设 A ∈ C(X), T = I −A，则
(1) dimKerT <∞.
(2) RanT 为 X 的闭子空间（T 是闭值域算子）.
(3) RanT = (KerT ∗)⊥.

注对于 F ⊂ X∗，定义零化子 F⊥ = {x ∈ X : f(x) = 0, ∀f ∈ F}.
证明 (1)令M = KerT 则其单位球面 SM =M ∩ S1，而 x ∈ SM 当且仅当 x ∈ S1且 x = Ax，即 SM ⊂ A(SM )，

因此 SM 列紧，这等价于 dimM = dimKerT <∞.
(2)设 Ran(T ) 3 yn → y ∈ X，下证 y ∈ Ran(T ). 首先易知存在 xn ∈ X 使得 yn = Txn.
若 {xn}有界，则 {Axn}存在子列 Axnk

→ u ∈ X，而

xnk
= (T +A)xnk

= ynk
+Axnk

→ y + u⇒ ynk
= Txnk

→ T (y + u),

因此 y = T (y + u) ∈ Ran(T ).
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3.2 紧算子的谱

若 {xn}无界，令 dn = d(xn,KerT ). dimKerT <∞说明存在最佳逼近元 zn ∈ KerT 使得 ||xn−zn|| = dn.
断言 {xn − zn}有界，从而由 T (xn − zn) = yn，问题转化到了有界情形.
若不然，设 vn = xn−zn

||xn−zn|| =
xn−zn

dn
，{yn}有界说明 Tvn = yn/dn → 0，另一方面 ||vn|| = 1说明 {Avn}有

子列 Avnk
→ w，并且

vnk
= Tvnk

+Avnk
→ w ⇒ Tvnk

→ Tw = 0, w ∈ S1 ∩KerT,

但对任意 z ∈ KerT 有

||vn − z|| =
1

dn
||xn − (zn + dnz)|| ⩾

1

dn
d(xn,KerT ) = 1,

因此 d(vn,KerT ) ⩾ 1，这与 vnk
→ w ∈ KerT 矛盾，说明 {xn − zn}有界.

引理 3.2

♥

设 A ∈ C(X), T = I −A，则
(1)升链 KerT ⊊ KerT 2 ⊊ · · · 必有终止.
(2)降链 Ran T ⊋ Ran T 2 ⊋ · · · 必有终止.
(3)若设升链长度为 p，降链长度为 q，则 p = q.

证明 (1)假设有严格无穷升链 KerT ⊊ KerT 2 ⊆ · · ·，则由 Riesz引理，存在

xn ∈ S1 ∩KerTn+1, d(xn,KerTn) ⩾ 1

2
,

并且对任意 n > m有

Tn(Txn +Axm) = Tn+1xn + TnAxm = A(Tnxm) = 0⇒ Txn +Axm ∈ KerTn

进一步 ||Axn −Axm|| = ||xn − (Txn +Axm)|| ⩾ 1/2，但 {xn} ⊂ S1 有界，这与 A的紧性矛盾.
(2)若不然，则该降链为真闭子空间降链，由 Riesz引理，存在

xn ∈ Ran(Tn) ∩ S1, d(xn,Ran(T
n+1)) ⩾ 1

2
.

对任意m > n有（其中 xm ∈ Ran(Tm) ⊂ Ran(Tn+1), Txm ∈ Ran(Tm+1) ⊂ Ran(Tn+1), Txn ∈ Ran(Tn+1)）

Axn −Axm = xn − (xm + Txn − Txm)⇒ ||Axn −Axm|| ⩾ d(xn,Ran(T
n+1)) ⩾ 1

2
,

与 A的紧性矛盾.
(3) 首先证明 p ⩽ q，若不然则 p > q，这说明 KerT q ⊊ KerT q+1，存在 x ∈ KerT q+1, x /∈ KerT q . 设

y = T qx ∈ Ran(T q) = · · · = Ran(T p)，则存在 z ∈ X 使得 y = T qx = T pz，而 0 = T q+1x = Ty = T p+1z 说明

z ∈ KerT p+1 = KerT p，由此可得 y = T pz = 0, x ∈ KerT q，矛盾.
进一步证明 p = q，若不然则 p < q，这说明Ran(T p) ⊋ Ran(T p+1)，存在x = T py ∈ Ran(T p), x /∈ Ran(T p+1)，

而 T q−px = T qy ∈ Ran(T q) = Ran(T q+1)说明存在 z ∈ X 使得 T qy = T q+1z, y − Tz ∈ KerT q = KerT p（因为

p ⩽ q），故 x = T py = T p+1z ∈ Ran(T p+1)，矛盾.

定理 3.3 (Fredholm二择一律)

♥
设 A ∈ C(X), T = I −A，则 T 的单性与满性等价.

注对于方程 Tx = b，二择一律说明其解必为如下某种情形：

对任意 b ∈ X，Tx = b存在唯一解（这等价于 T 为双射）.
Tx = 0有非零解（这等价于 T 不是单射）.

证明 若 T 满，任取 x0 ∈ KerT，可以找到一列点 x1, x2, · · · 使得

Tx1 = x0, Tx2 = x1, · · · ⇒ x0 = Tx1 = T 2x2 = · · · = Tnxn = · · ·

但由于核升链有终止，因此存在 N 使得任何 KerTn ⊂ KerTN，当 n > N 时

x0 = Tnxn ∈ Tn(KerTn+1) ⊂ Tn(KerTN ) = {0},
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3.2 紧算子的谱

故 KerT = 0，即 T 单.
若 T 单，考虑降链 X ⊋ Ran(T ) ⊋ Ran(T 2) ⊋ · · ·，由引理可知必然存在 N 使得 Ran(TN ) = Ran(TN+1)，

即 T (TN (X)) = TN (X) = T (TN−1(X))，T 单说明 TN (X) = TN−1(X)，以此类推可得 T (X) = X，即 T 满.

3.2.2 紧算子的谱

定理 3.4 (Riesz-Schauder)

♥

设 X 完备且 A ∈ C(X)，则

(1)若 dimX =∞，则 0 ∈ σ(A).
(2)非零谱点一定是特征值，即 σ(A)\{0} = σp(A)\{0}.
(3)非零特征值的特征子空间维数有限，并且不同特征值对应的特征向量线性无关.
(4) 0为 σ(A)的唯一可能极限点.

证明 (1)注意到 0 ∈ ρ(A)当且仅当 −A可逆（即 A可逆），当且仅当 I = AA−1 紧，当且仅当 dimX <∞.
(2)若 λ 6= 0且 λ /∈ σp(A)，则 λI −A单，由二择一律可知其满，故 λ ∈ ρ(A).
(3)若 λ 6= 0，则 Ker (λI −A) = Ker (I − λ−1A)，有 Riesz-Fredholm可得. 线性无关性是显然的.
(4)若 σ(A)有非零极限点 λ0，设 {λn} ⊂ σ(A), λn → λ0（不妨设 λn 6= 0），由 (2)可知这些 λn都是特征值，

取 0 6= xn ∈ Ker (λnI −A)，则 {xn}线性无关，令Xn = Span(x1, · · · , xn)，则X1 ⊊ X2 ⊊ · · ·，由 Riesz引理，
存在

yn =
∑
k=1

αn
kxk ∈ Xn ∩ S1, d(yn, Xn−1) >

1

2
,

则

Ayn =

n∑
k=1

αn
kλkxk ∈ Xn, (λnI −A)yn =

n−1∑
k=1

(λn − λk)αn
kxk ∈ Xn−1,

从而对任意 n > m有∣∣∣∣∣∣∣∣A( ynλn
)
−A

(
ym
λm

)∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣yn − [(λnI −A)( ynλn
)
+A

(
ym
λm

)]∣∣∣∣∣∣∣∣ > 1

2
,

与 A的紧性矛盾.

推论 3.1

♥
设 A ∈ C(X)，则 σ(A)至多可数.

证明 用一列同心紧圆环分解 C，则 σ(A) =
⋃

k Ek，其中每个 Ek 都有限（否则根据有界集的列紧性可得 σ(A)

的非零聚点），故 σ(A)至多可数.
由此可以给出 σ(A)的刻画.

推论 3.2

♥

设 X 完备，A ∈ C(X)，则 σ(A)只有如下三种情形：

σ(A) = {0}.
σ(A) = {0, λ1, · · · , λn}.
σ(A) = {0, λ1, λ2, · · · }，其中 λn → 0.

¶紧算子谱的例子

下面给出一些例子，说明在无穷维 Banach空间中，这些情形都是可能出现的（包括 0作为点谱、剩余谱、

连续谱）.
例 3.2 σ(A) = {0}
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3.2 紧算子的谱

若 A1 = 0，则 σ(A1) = σp(A1) = {0}.
设 X = {f ∈ C[0, 1] : f(0) = 0}，考虑紧算子（由 Arzela-Ascoli定理易证其紧）

A2 : X → X, f(t) 7→
∫ t

0

f(s)ds,

通过求导解方程可得 σ(A2) = {0}, σp(A2) = ∅，对任意满足 p(0) = 0的多项式函数 p，p′ 可以由一列多项

式 {qn} ⊂ C[0, 1]逼近，将其积分得到 {A2qn} ⊂ X，并且 A2qn → p，因此 p ∈ X，由Weierstrass逼近定
理可得1 R(A2) = X，故 0 ∈ σc(A2).
设 {λn}为一列收敛到 0的非零序列，考虑紧算子（它是紧算子与有界线性算子的复合）

A3 : `2 → `2, (a1, a2, · · · ) 7→ (0, λ1a1, λ2a2, · · · , )

则易证 σ(A3) = {0}, σp(A3) = ∅，并且 R(A3) 6= `2（至少它不包含 e1），因此 0 ∈ σr(A3)

例 3.3 σ(B) = {0, λ1, · · · , λn}
考虑紧算子（它是有限秩算子）

B1 : `2 7→ `2, (a1, a2, · · · ) 7→ (λ1a1, λ2a2, · · · , λnan, 0, 0, · · · ),

则 σ(A) = σp(A) = {0, λ1, · · · , λn}.
设 X = {f ∈ C[0, 1] : f(0) = 0}，考虑（其中 A2 见上例，紧算子的 product还是紧算子）

B2 : Cn ×X → Cn ×X, (x1, · · · , xn; f) 7→ (λ1x1, · · · , λnxn;A2f),

则 σp(A) = {λ1, · · · , λn}, 0 ∈ σc(A)（因为 R(B2) = Cn ×R(A2) = Cn ×R(A2) = Cn ×X）.
考虑紧算子（其中 A3 见上例）

B3 : Cn × `2 → Cn × `2, (x1, · · · , xn; ξ) 7→ (λ1x1, · · · , λnxn;A3ξ),

则 σp(A) = {λ1, · · · , λn}, 0 ∈ σr(A)（因为 R(B3) = Cn ×R(A3) = Cn ×R(A3) 6= Cn ×X）.
例 3.4 σ(F ) = {0, λ1, λ2, · · · }, λn → 0

考虑紧算子（它可以由有限秩算子逼近）

F1 : `2 7→ `2, (a1, a2, · · · ) 7→ (0, λ1a2, λ2a3, · · · ),

则 σp(F1) = {0, λ1, λ2, · · · }.
考虑紧算子

F2 : `2 7→ `2, (a1, a2, · · · ) 7→ (λ1a1, λ2a2, · · · ),

则 σp(F2) = {λ1, λ2, · · · }, 0 ∈ σc(F2)（容易验证 R(F2)
⊥
= {0}）.

考虑紧算子（F2, A3 均见前文）

F3 : `2 → `2, (α, β) 7→ (F2α,A3β),

则 σp(F3) = {λ1, λ2, · · · }, 0 ∈ σr(F3)（因为 R(F3) = R(F2)×R(A3) = `2 ×R(A3) 6= `2 × `2）.

¶不变子空间

定义 3.5 (不变子空间)

♣
设 X 为 Banach空间，A ∈ L(X)，若M ⩽ X 满足 A(M) ⊂M，则称之为 A的不变子空间.

注显然 {0}, X 为 A的平凡不变子空间.

1注意，X 中任意函数都可以用在 0处取 0的多项式函数逼近.
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3.3 Hilbert-Schmidt定理

引理 3.3

♥

(1)若M 为 A的不变子空间，则M 也是 A的不变子空间.
(2)若 λ ∈ σp(A)，则 Ker (λI −A)为 A的闭不变子空间.
(3)对任意 y ∈ X，Ly := {p(A)y : p ∈ C[x]}是 A的不变子空间.

下述定理说明了紧算子不变子空间的存在性.

定理 3.5

♥
设 X 为 Banach空间且 dimX ⩾ 2，则任意 A ∈ C(X)有非平凡闭不变子空间.

证明 不妨设 dimX = ∞, A 6= 0, ||A|| = 1, σp(A)\{0} = ∅（从而 σ(A) = {0}）. 假设 A没有非平凡闭不变子空

间，则对任意 y ∈ X 有 Ly = X . 首先取 ||x0|| > 1, ||Ax0|| > 1，则 C := A(B(x0, 1)) ⊂ X 紧且不包含 0.
对任意 y0 ∈ C，存在 A 的多项式 Ty0

= Ty0
(A) ∈ C[A] 使得 ||Ty0

y − x0|| < 1，从而存在 δy0
> 0 使得

||Ty0
y − x0|| < 1, ∀x ∈ B(y0, δy0

). 这些球构成的 C 的开覆盖，从而可取有限子覆盖
⋃n

i=1B(yi, δi) ⊃ C，从而对
任意 y ∈ C，存在 i1 使得

||Ti1y − x0|| < 1⇒ Ti1y ∈ B(x0, 1)⇒ ATi1y ∈ C,

从而存在 i2 使得

||Ti2ATi1y − x0|| = ||Ti2Ti1Ay − x0|| < 1,

以此类推，存在 i1, i2, · · · 使得（其中 µ = maxni=1 ||Ti||）∣∣∣∣∣∣
∣∣∣∣∣∣
k+1∏
j=1

TijA
ky − x0

∣∣∣∣∣∣
∣∣∣∣∣∣ < 1⇒ ||x0|| − 1 <

∣∣∣∣∣∣
∣∣∣∣∣∣
k+1∏
j=1

TijA
ky

∣∣∣∣∣∣
∣∣∣∣∣∣ ⩽ µk+1||Aky||,

因此

1

µ

(
||x0|| − 1

µ||y||

)
⩽
(
||Aky||
||y||

) 1
k

⩽ ||Ak|| 1k ,

令 k →∞可得 1/µ ⩽ 0，矛盾.

3.3 Hilbert-Schmidt定理
本节讨论 Hilbert空间上对称算子、对称紧算子的谱.

定义 3.6 (对称算子)

♣
设 H 为 Hilbert空间，A ∈ L(H)，若对任意 x, y ∈ H 有 〈Ax, y〉 = 〈x,Ay〉，则称 A为 H 上的对称算子.

命题 3.10

♠

设 H 为 Hilbert空间，A ∈ L(H)，则

(1) A对称当且仅当 〈Ax, x〉 ∈ R, ∀x ∈ H .
(2)若 A对称，则 σ(A) ⊂ R且对任意 x ∈ H,λ ∈ C,=λ 6= 0有（=表示虚部）

||(λI −A)−1x|| ⩽ 1

|=λ|
||x||.

(3)若 A对称，H1 ⩽ H 为 A的闭不变子空间，则 A|H1
: H1 → H1 也是对称算子.

(4)若 A对称，则对任意 λ 6= λ′ ∈ σp(A)有 Ker (λI −A) ⊥ Ker (λ′I −A).
(5)若 A对称，则 ||A|| = sup||x||=1 |〈Ax, x〉|.

证明 (1)若 A对称，则对任意 x ∈ H 有 〈Ax, x〉 = 〈x,Ax〉 = 〈Ax, x〉，即 〈Ax, x〉 ∈ R. 反之若该式成立，则对任
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3.3 Hilbert-Schmidt定理

意 x, y ∈ H 有

〈A(x+ y), x+ y〉 = 〈x+ y,A(x+ y)〉, 〈A(x+ iy), x+ iy〉 = 〈x+ iy, A(x+ iy)〉,

化简可得

〈Ax, y〉+ 〈Ay, x〉 = 〈Ax, y〉+ 〈Ay, x〉, −〈Ax, y〉+ 〈Ay, x〉 = 〈Ax, y〉 − 〈Ay, x〉,

相减即得.
(2)设 λ = µ+ iν, ν 6= 0，则对任意 x ∈ H 有

||(λI −A)x||2 = 〈(λI −A)x, (λI −A)x〉 = 〈(µI −A)x+ iνx, (µI −A)x+ iνx〉

= ||(µI −A)x||2 + ||νx||2

⩾ |ν|2||x||2,

因此 λI −A单，下证 Ran(λI −A) = H（从而 (λI −A)−1 ∈ H）：
Ran(λI − A)闭：设 {yn} = {(λI − A)xn} ⊂ Ran(λI − A)收敛到 y ∈ H，则由前面的估计可得 {xn}为
Cauchy列，故 xn → x，从而由连续性可知 y = (λI −A)x ∈ Ran(λI −A).
(Ran(λI −A))⊥ = {0}：只需注意到

(Ran(λI −A))⊥ = Ker ((λI −A)∗) = Ker (λ̄I −A) = {0}.

(3)(4)显然.
(5)注意到对任意 x ∈ H 有 ||x|| = sup||y||=1 |〈x, y〉|，因此由 Riesz表示定理可得

||A|| = sup
||x||=||y||=1

|〈Ax, y〉| = sup
||x||=1

||Ax|| = ||A||.

3.3.1 Hilbert空间上的对称紧算子

定理 3.6

♥

设 A为 Hilbert空间 H 上的对称紧算子，则存在 ||x0|| = 1满足

|〈Ax0, x0〉| = sup
||x||=1

|〈Ax, x〉| = ||A||, Ax0 = 〈Ax0, x0〉x0.

注该定理说明，对称紧算子的特征值恰好是其最大特征值，也恰好对应其算子范数.
证明 不妨设A 6= 0且 ||A|| = sup||x||=1〈Ax, x〉 := λ，则存在 {xn} ⊂ S1使得 〈Axn, xn〉 → λ. 由 Eberlein-Smulian
定理可知H 中的单位闭球弱自列紧，从而 {xn}有子列弱收敛到 x0（不妨设为其自身）. A紧说明其全连续，故
Axn → Ax0，因此

|〈Axn, xn〉 − 〈Ax0, x0〉| ⩽ |〈A(xn − x0), xn〉|+ |〈Ax0, xn − x0〉| ⩽ ||Axn −Ax0||+ ||Ax0|| ||xn − x0|| → 0,

从而 λ = 〈Ax0, x0〉，这也说明 λ = 〈Ax0, x0〉 ⩽ ||A|| ||x0||2，即 ||x0|| = 1. 进一步

||Ax0 − λx0|| = 〈Ax0 − λx0, Ax0 − λx0〉 = ||Ax0||2 − λ2 ⩽ ||A||2 − λ2 = 0,

因此 Ax0 = λx0.

定理 3.7 (Hilbert-Schmidt)

♥

设A为非平凡 Hilbert空间H 上的对称紧算子，则有至多可数个非零的，只能以 0为聚点的实数 {λi}（计
重数），它们是 A的特征值，并对应一组规范正交基 {ei}使得对任意 x ∈ H 有

x =
∑
i

〈x, ei〉ei +
∑
j

〈x, e(0)j 〉e
(0)
j , Ax =

∑
i

λi〈x, ei〉ei.

其中 {e(0)j }为 KerA的规范正交基（未必可数），特别当 0 /∈ σp(A)时 {e(0)j } = ∅，此时 {ei}构成H 的规

范正交基.

54



3.3 Hilbert-Schmidt定理

证明 根据 Riesz-Fredholm可知对任意 0 6= λ ∈ σp(A)有 m(λ) := dimKerN(λI − A) < ∞，记其规范正交基为
{e(λ)i : i = 1, · · · ,m(λ)}，由紧算子谱的刻画可知 σp(A)− {0}中元素可计重数排成一列 {λi}使之收敛到 0，记

{ei}为上述对应的规范正交基（特征向量）. 若 0 ∈ σp(A)，则取 KerA的规范正交基 {e(0)j }，令

M =

Span({ei}), 0 /∈ σp(A),

Span({ei} ∪ {e(0)j }), 0 ∈ σp(A),

下证M = H，注意到 A(M
⊥
) ⊂ M

⊥
，考虑紧算子 Ã := A|

M
⊥，由M 的定义可知 Ã无特征值，但若M

⊥ 6= 0

则由前述定理可得其中必然有特征值，矛盾，故M
⊥
= 0，得证.
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第 4章 Banach代数

4.1 Banach代数

定义 4.1 (代数)

♣

称 A为复数域 C上的代数，若：
A是一个 C-线性空间.
A是一个环.
相容性：∀λ, µ ∈ C, a, b ∈ A有 (λa)(µb) = (λµ)(ab).

特别当 A为幺环时，称之为一个含幺代数；当 A为除环时，称之为一个可除代数.

注本章出现的代数都是 C上的代数，但未必含幺，也未必交换.
例 4.1不含幺代数嵌入含幺代数 若A 为一个不含幺代数，则可考虑 Â := A ×C，它具有自然的线性空间结构，
以及特殊的乘法

(a, λ) · (b, µ) = (ab+ λb+ µa, λµ), ∀a, b ∈ A , λ, µ ∈ C,

这给出了 Â 一个含幺代数（单位元为 (0, 1)）结构，特别当 A 为 Banach代数时，可以通过定义 Ã 上的（自然

的）乘积范数赋予一个 Banach代数结构.

定义 4.2 (Banach代数)

♣

设 A 为 C-代数，若其上存在完备范数 || · ||满足

||ab|| ⩽ ||a|| ||b||, ∀a, b ∈ A ,

则称 A为一个 Banach代数.

注最经典的一类 Banach代数就是 Banach空间上的有界线性算子 L(X).
下面给出一些 Banach代数的性质，首先通过分析学中经典的二分法可证明：

命题 4.1 (乘法的连续性)

♠
设 A 为 Banach代数，则 µ : A ×A → A , (a, b) 7→ ab是连续的.

若 A 为（非平凡）含幺 Banach代数，则显然有

||e|| ⩽ ||e2|| ⩽ ||e||2 ⇒ ||e|| ⩾ 1,

此时考虑 A 上的另一种范数（可以视为 A ↪→ L(A )继承的范数）

|||a||| := sup
0 ̸=b∈A

||ab||
||b||

,

注意到 ||a||
||e|| ⩽ |||a||| ⩽ ||a||，因此两种范数等价，即 (A , ||| · |||)也是 Banach空间. 此外注意到 ||ab|| ⩽ |||a||| ||b||，

因此

|||ab||| = sup
0 ̸=c∈A

||abc||
||c||

⩽ |||a||| |||b|||,

从而在新的范数下 A 依然是一个 Banach 代数，特别在新的范数下 |||e||| = 1. 综上，我们总是可以约定含幺
Banach代数中单位元的范数为 1.
对于 Banach代数的理想，可以定义商代数；若该理想是闭的，则可以定义商 Banach空间，并且可以验证这

些结构给出了一个商 Banach代数结构.



4.2 Gelfand表示

命题 4.2 (Banach代数的商)

♠

设 I 为 Banach代数 A 的闭理想，则 A /I 在商代数以及商赋范空间结构下是 Banach代数. 特别地若 A

含幺且 ||e|| = 1则 ||[e]||∗ = 1.

证明 显然 A /J 同时为 C-代数以及 Banach空间，下面证明相容性：

||[a][b]||∗ ⩽ ||[ab]||∗ ⩽ inf
x∈[a],y∈[b]

||xy|| ⩽ inf
x∈[a],y∈[b]

||x|| ||y|| = ||[a]||∗||[b]||∗,

故 A /J 为 Banach代数. 最后显然 1 ⩽ ||[e]||∗ ⩽ ||e|| = 1，故 ||[e]||∗ = 1.

定义 4.3 (半单 Banach代数)

♣
称 Banach代数 A 为半单的，若 J =

⋂
J∈M J = 0.

4.2 Gelfand表示

4.2.1 含幺 Banach代数的极大理想

命题 4.3

♠

设 A 为含幺 Banach代数，记 G(A )为 A 中可逆元全体，则

(1)即若 a ∈ A , ||a|| < 1，则 e− a ∈ G(A )且 (e− a)−1 =
∑∞

n=0 a
n.

(2) B(e, 1) ⊂ G(A )，特别地，G(A )为开集.
(3)取逆 G(A )→ G(A ), a 7→ a−1 为连续映射.

证明 (1)记 bn =
∑n

i=0 a
i，则易得 {bn}为 Cauchy列，由 bn(e− a) = (e− a)bn = e− an+1 → e以及乘法的连续

性可知其极限即为 (e− a)−1.
(2)对任意 b ∈ B(e, 1)有 ||e−b|| < 1，从而 b = e−(e−b) ∈ G(A ). 对任意 a ∈ G(A )，都有B(a, ||a−1||−1) ⊂

aB(e, 1) ⊂ G(A )，故 G(A )为开集.
(3) 根据齐性，只需证明它在 e 处连续，任取 {bn} ⊂ G(A ), bn → e（不妨设 supn ||e − bn|| < 1），则

b−1
n = (e− (e− bn))−1 =

∑∞
k=0(e− bn)k，进而

||e− b−1
n || =

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=1

(e− bn)k
∣∣∣∣∣
∣∣∣∣∣ ⩽

∞∑
k=1

||e− bn||k =
||e− bn||

1− ||e− bn||
→ 0,

故 b−1
n → e，得证.
下述定理刻画了可除 Banach代数的结构：

定理 4.1 (Gelfand-Mazur)

♥
设 A 是一个可除 Banach代数且 ||e|| = 1，则有等距同构 A ∼= C.

证明 设B = {ze : z ∈ C}，则显然B ∼= C，下证B = A，假设存在 a ∈ A，对任意 z ∈ C都有 ze− a 6= 0，则

可定义取逆映射 r : C→ A , z 7→ (ze− a)−1.
【Step 1. 证明 r弱解析】

即证明对任意 f ∈ A ∗，F = f ◦ r : C→ C为解析函数.
对任意 z, z0 ∈ C，根据预解式可得

r(z)− r(z0) = (z0 − z)r(z)r(z0),

由于 r连续（因为取逆映射连续），因此

F ′(r0) = lim
z→z0

F (z)− F (z0)
z − z0

= − lim
z→z0

f(r(z)r(z0)) = f((r(z0))
2),
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4.2 Gelfand表示

这说明 F = f ◦ r可微，从而其解析.
【Step 2. 证明 r有界且在无穷远处收敛到 0】

取 z > 2||a||，则 ||z−1a|| < 1/2 < 1，故

||r(z)|| = ||(ze− a)−1|| = 1

|z|
||(e− z−1a)−1|| ⩽ 1

|z|

∞∑
n=0

||z−1a||n =
1

|z|(1− ||z−1a||)
=

1

|z| − |a|
,

令 z →∞可知 ||r(z)|| → 0，根据其连续性可知其有界.
【Step 3. 推得矛盾：r ≡ 0】

已知对任意 f ∈ A ∗，f ◦ r 为有界解析函数（且在无穷远处收敛到 0），故由 Liouville定理可知 f ◦ r ≡ 0，

进而由 Hahn-Banach定理可知 r ≡ 0，矛盾.

引理 4.1 (含幺 Banach代数极大理想的闭性)

♥设 A 为含幺 Banach代数，则其任意极大理想 J 都是闭集.

证明 只需证明 J 为A 的真理想. 首先验证子代数结构：对任意 a, b ∈ J, λ, µ ∈ C，取 J 中点列 an → a, bn → b，

则

||(λa+ µb)− (λan + µbn)|| ⩽ |λ| ||a− an||+ |µ| ||b− bn|| → 0, ||anbn − ab|| → 0

说明 λa+ µb, ab ∈ J，仿照上面的乘法可验证吸收律，故 J 为理想.
此外，前面已经证明过 B(e, 1) ⊂ G(A )，因此 B(e, 1) ∩ J = ∅，这说明 e /∈ J，故 J 为理想.
对于含幺交换 Banach代数，其极大理想是闭的，并且 A /J 为一个可除代数（且 |||[e]|||∗ = 1），因此借助

Gelfand-Mazur定理可得：

推论 4.1

♥
设 A 为含幺交换 Banach代数，J 为一个极大理想，则有等距同构 A /J ∼= C.

注这里的交换性是为了保证 A /J 为除环.

4.2.2 Gelfand表示

借助等距同构 A /J ∼= C，可以给出含幺交换 Banach代数的 Gelfand表示. 首先根据上一小节的结论，对任
意极大理想 J，可以定义（第一个箭头为作商，第二个箭头为同构）

ϕJ : A → A /J → C, a 7→ [a] = z[e] 7→ z,

命题 4.4

♠
设 ϕJ : A → C如上定义，则它是连续同态，且满足 ϕJ(e) = 1, |ϕJ(a)| ⩽ ||a||.

证明 对任意 a, b ∈ A , λ, µ ∈ C，设 [a] = za[e], [b] = zb[e]，则 [λa+ µb] = (λza + µzb)[e], [ab] = zazb[e]，因此

ϕJ(λa+ µb) = λza + µzb = λϕJ(a) + µϕJ(b),

ϕJ(ab) = zazb = ϕJ(a)ϕJ(b),

进一步，显然 ϕJ(e) = 1，并且 ||ϕJ(a)|| = ||[a]||∗ ⩽ ||a||.

定义 4.4 (Gelfand表示)

♣

设 A 为含幺交换 Banach代数，记M为其极大理想的全体，定义 A 的 Gelfand表示为

Γ : A → {M→ C}, a 7→ {â : J 7→ ϕJ(a)}.

注其中 {M→ C}为M上的复值函数代数（这也是一个交换含幺代数）.
容易验证，Gelfand表示确实给出了一个代数同态.
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4.2 Gelfand表示

命题 4.5

♠
Gelfand表示 Γ : A → {M→ C}是一个 C-代数同态.

为了研究 Γ的分析性质，需要赋予 {M → C}一个 Banach代数结构，为此需要定义M上适当的拓扑——

我们希望它是紧的，并且使得所有 â都连续——下面讨论这件事.

4.2.3 Gelfand拓扑

命题 4.6 (同态泛函的连续性)

♠

设 A 为含幺 Banach代数，则
(1)若 ϕ : A → C为非零同态，则 ϕ(e) = 1, |ϕ(a)| ⩽ ||a||，特别地 ϕ连续.
(2)若 A 可交换，则 a ∈ G(A )当且仅当对任意非零同态 ϕ : A → C都有 ϕ(a) 6= 0.

证明 (1) ϕ 6= 0说明 ϕ(e) 6= 0，故由 ϕ(e) = ϕ(e)ϕ(e)可得 ϕ(e) = 1. 对任意 0 6= a ∈ A，不妨设 ϕ(a) 6= 0，首先

ϕ(ϕ(a)e− a) = 0说明 ϕ(a)e− a不可逆，进而 e− a
φ(a) 不可逆，故 ||a/ϕ(a)|| ⩾ 1，|ϕ(a)| ⩽ ||a||.

(2)若 a ∈ G(A )则 ϕ(a)ϕ(a−1) = 1，故 ϕ(a) 6= 0, ∀ϕ 6= 0；反之，假设 a /∈ G(A )，则存在极大理想 J 3 a，
从而 ϕJ(a) = 0，矛盾.

对于含幺交换 Banach代数 A，考虑其到 C非零同态的全体（前面已经证明了同态 A → C必连续）

定义 4.5 (∆的定义)

♣
∆ := {ϕ ∈ A ∗ : ϕ(e) = 1, ϕ(ab) = ϕ(a)ϕ(b), ∀a, b ∈ A }.

对任意 J ∈M，可以考虑映射 i : M→ ∆, J 7→ ϕJ，接下来分两步走：

(1)证明 i : M→ ∆是一个双射.
(2)构造 ∆上的紧 Hausdorff拓扑，将其“迁移”到M上，并保证所有 â : M→ C连续.

¶双射的构造

命题 4.7 (M与 ∆之间的一一对应)

♠考虑映射 i : M→ ∆, J 7→ ϕJ，则它是双射.

证明 单性：若 ϕJ = ϕI，则 J = KerϕJ = KerϕI = I .
满性：对任意 ϕ ∈ ∆，J := Kerϕ ∈M，则对任意 a ∈ A , [a] := za[e] ∈ A /J 有（注意到 zae− a ∈ Kerϕ）

ϕJ(a) = za = ϕ(zae) = ϕ(a),

故 ϕ = ϕJ = i(J).
其中单性的证明用到了如下引理保证：

引理 4.2

♥设 J 为 A 的极大理想，则 KerϕJ = J .

证明 显然 J ⊂ KerϕJ，由极大性以及 ϕJ(e) = 1可知 J = KerϕJ .
满性的证明用到了如下引理：

引理 4.3

♥设 ϕ : A → C为非平凡同态，则 Kerϕ为 A 的极大理想.

注这一命题并不涉及 A的 Banach代数结构.
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4.3 Banach代数中的谱

证明 首先显然 Kerϕ为 A 的理想，对任意 0 6= [a] ∈ A /Kerϕ有 ϕ(a) 6= 0，注意到 ϕ(a − ϕ(a)e) = 0，因此

[a][e] = [e][a] = [ϕ(a)e] = (ϕ(a))[e], [a]−1 = (ϕ(a))−1[e]，即 A /Kerϕ为可除代数，Kerϕ为极大理想.

¶M上的 Gelfand拓扑

首先考虑 ∆上的拓扑：

命题 4.8 (∆继承 A ∗ 的 *弱拓扑)

♠设 A 为含幺 Banach代数，则 ∆为 A ∗ 的 *弱紧 Hausdorff子空间.

证明 根据遗传性可知 ∆是 Hausdorff空间，由 Alaoglu定理，单位闭球 S1 ⊂ A ∗ 是 *弱紧的，而 ∆ ⊂ S1，因

此只需证明其弱 *闭. 设 φ0 ∈ ∆ ⊂ S1，下面分别证明 φ0(e) = 1, φ0(ab) = φ0(a)φ0(b).
保单位元：对任意 n ∈ N有∆∩ (φ0+U(1/n; e)) 6= ∅，从中任取 φn，则 |1−φ0(e)| = |φn(e)−φ0(e)| < 1/n，

令 n→∞即得.
同态：对任意 n ∈ N有 ∆ ∩ (φ0 + U(1/n; a, b, ab)) 6= ∅，从中任取 φn，则

|φ0(ab)− φ0(a)φ0(b)| ⩽ |φ0(ab)− φn(ab)|+ |φn(a)| |φn(b)− φ0(b)|+ |φn(a)− φ0(a)| |φ0(b)|

⩽ 1

n

[
1 +

1

n
+ |φ0(a)|+ |φ0(b)|

]
,

令 n→∞即得.
在上述命题的基础上，借助一开始的等同

i : M→ ∆, J 7→ ϕJ ,

可以将 ∆继承 A ∗ 中的 *弱拓扑迁移到M上，从而得到一个紧 Hausdorff空间.

命题 4.9 (M上的 Gelfand拓扑)

♠

考虑如下形式的集合（J0 ∈M, A ⊂ A 有限）

N(J0; ε,A) := {J ∈M : |ϕJ(a)− ϕJ0
(a)| < ε, ∀a ∈ A},

则它们构成M上的一个拓扑，使得 i : M→ ∆为同胚.

有了拓扑结构，可以更进一步研究 Gelfand表示.

定理 4.2 (Gelfand表示的连续性)

♥

设 A 为含幺交换 Banach代数，则对任意 a ∈ A，Γ(a) = â为M上的连续函数，特别地

Γ : A → C(M), a 7→ {â : J 7→ ϕJ(a)}

为连续同态.

注这里 C(M)上的拓扑即为紧空间上连续函数的一致收敛拓扑，它也是一个 Banach代数.
证明 对 C中的球 B(â(J0), r)有

â−1(B(â(J0), r)) = {J ∈M : |â(J)− â(J0)| < r} = {J ∈M : |ϕJ(a)− ϕJ0
(a)| < r} = N(J0; r, a),

即 â将任意 â(J0)的邻域拉回为 J0 的邻域，故 â : M→ C连续.
进一步有（注意到 Γ为 Banach空间之间的映射）||Γa||C(M) = supJ∈M |ϕJ(a)| ⩽ ||a||A，故 Γ连续.

4.3 Banach代数中的谱
本节的讨论有点类似线性算子的谱.
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定义 4.6 (Banach代数中的谱)

♣

设 A 为含幺 Banach代数，G(A )为其中可逆元的全体，则对任意 a ∈ A，定义

σ(a) := {λ ∈ C : λe− a /∈ G(A )}, ρ(a) := C\σ(a).

分别称之为 a的谱集与预解集.

注根据定义可知，谱通常都对含幺 Banach代数讨论.
类似线性算子的谱，同样可以得到一些基本结论：

定理 4.3

♥

设 A 为含幺 Banach代数，则对任意 a ∈ A 有

(1) ρ(a)为开集.
(2) σ(a)为非空紧集.

证明 (1)对任意 λ0 ∈ ρ(a), λ0e− a ∈ G(A )，注意到对任意 λ ∈ C有

λe− a = (λ0e− a)− (λ0 − λ)e = (λ0e− a)[e− (λ0 − λ)(λ0e− a)−1],

因此当 |λ− λ0| < ||(λ0e− a)−1||−1 时就有 λe− a可逆，从而 ρ(a)为开集.
(2)由 (1)可知 σ(a)为闭集，注意到对任意 |λ| > ||a||有 λe− a = λ(e− a/λ)可逆，因此 σ(a) ⊂ B(0, ||a||)，

即 σ(a)为紧集（有界闭集）.
进一步证明其非空，若不然假设 ρ(a) = C，考虑函数 r : C→ A , z 7→ (ze− a)−1，仿照 Gelfand-Mazur定理

的证明过程可知 r ≡ 0（有界弱解析函数，且在无穷远处收敛到 0），矛盾.

定义 4.7 (谱半径)

♣
设 A 为含幺 Banach代数，称 r(a) := sup{|λ| : λ ∈ σ(a)}为 a的谱半径.

注显然 0 < r(a) ⩽ ||a||.
若假设 A 交换，那么前面讨论的 Gelfand表示就有了用武之地.

定理 4.4 (谱集与 Gelfand表示)

♥

设 A 为含幺交换 Banach代数，则对任意 a ∈ A 有

σ(a) = {â(J) : J ∈M} = Ran(â).

从而 r(a) = sup{|λ| : λ ∈ σ(a)} = ||Γa||C(M).

注也就是说，a的谱集等于 â的值域.
证明 一方面

λ ∈ σ(a)⇔ λe− a /∈ G(A )⇔ ∃J ∈M, λe− a ∈ J ⇔ ϕJ(λe− a) = 0⇔ â(J) = λ.

进一步

||Γa||C(M) = sup
J∈M

|â(J)| = sup
λ∈Σ(a)

|λ| = r(a).

仿照先前对 A ∈ L(X)中谱半径公式的证明，

定理 4.5 (交换 Banach代数的谱半径公式)

♥

设 A 为含幺交换 Banach代数，则对任意 a ∈ A 有

||Γa||C(M) = lim
n→∞

||an|| 1n .

证明 【Step 1. 证明 ||Γa||C(M) ⩽ lim inf
n→∞

||an|| 1n】

61



4.3 Banach代数中的谱

首先断言

(
sup
J∈M

|(Γa)(J)|
)n

= sup
J∈M

|(Γa)(J)|n，只需注意到

|(Γa)(J)| ⩽ sup
J∈M

|(Γa)(J)| ⇒ |(Γa)(J)|n ⩽
(
sup
J∈M

|(Γa)(J)|
)n

⇒ sup
J∈M

|(Γa)(J)|n ⩽
(
sup
J∈M

|(Γa)(J)|
)n

,

|(Γa)(J)|n ⩽ sup
J∈M

|(Γa)(J)|n ⇒ sup
J∈M

|(Γa)(J)| ⩽
(
sup
J∈M

|(Γa)(J)|n
) 1

n

⇒
(
sup
J∈M

|(Γa)(J)|
)n

⩽ sup
J∈M

|(Γa)(J)|n.

从而

||Γa||nC(M) =

(
sup
J∈M

|(Γa)(J)|
)n

= sup
J∈M

|(Γa)(J)|n = sup
J∈M

|(Γan)(J)| = ||Γan||C(M) ⩽ ||an||.

移项并取下极限即得.
【Step 2. 证明 r(a) ⩾ lim sup

n→∞
||an|| 1n】

对任意 f ∈ A ∗，考虑 ρ(a)上的全纯函数 f((λe− a)−1)，一方面它在 |λ| > r(a)上存在唯一的 Laurent展开，
另一方面在 |λ| > lim sup

n→∞
||an|| 1n 上，容易验证

(λe− a)−1 =

∞∑
n=0

an

λn+1
⇒ f((λe− a)−1) =

∞∑
n=0

f(an)

λn+1
,

从而这就是它在 |λ| > ||Γa||上的 Laurent展开. 对任意 ε > 0，取 λ = r(a) + ε可得
∞∑

n=0

|f(an)|
(r(a) + ε)n+1

=

∞∑
n=0

|f(tn)| <∞, tn :=
an

(r(a) + ε)n+1
,

根据一致有界原理可知

sup
n
|f(tn)| = sup

n
|t∗∗n (f)| <∞, ∀f ∈ A ∗ ⇒ C := sup

n
||t∗∗n || = sup

n
||tn|| <∞,

从而

||an|| 1n ⩽ C
1
n (r(a) + ε)

n+1
n ⇒ lim

n→∞
||an|| 1n ⩽ r(a) + ε,

由 ε任意性可知 r(a) ⩾ lim sup
n→∞

||an|| 1n .

注由于已经证明了 ||Γa||C(M) = r(a)，因此也可以完全仿照谱半径公式那样证明 r(a) = lim
n→∞

||an|| 1n .

4.3.1 Gelfand表示的讨论

对于先前定义的 Gelfand表示 Γ : A → C(M)，有一些自然的问题：

何时 Γ为单同态？

何时 Γ为等距单射？

何时 Γ为等距同构？

这里可以回答前两个问题，第三个将在后文中关于 C∗ 代数的部分讨论.

定理 4.6 (Γ单性的刻画)

♥

设 A 为含幺交换 Banach代数，则下述等价：
(1) A 半单.
(2) Γ : A → C(M)为单同态.
(3)若 lim

n→∞
||an|| 1n = 0，则 a = 0.

证明 (1)⇔ (2)：注意到

Γa = 0⇔ â(J) = ϕJ(a) = 0, ∀J ∈M⇔ a ∈
⋂

J∈M

ϕJ =
⋂

J∈M

J.

(2)⇔ (3)：根据引理立得.
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4.4 一些例子

推论 4.2 (Γ等距单的刻画)

♥
设 A 为含幺交换 Banach代数，则 Γ : A → C(M)为等距单同态当且仅当对任意 a ∈ A 有 ||a2|| = ||a||2.

证明 若 Γ为等距单同态，则 ||a2|| = ||Γa2||C(M) = ||(Γa)2||C(M) = ||Γa||2C(M) = ||a||
2.

反之若对任意 a ∈ A 有 ||a2|| = ||a||2，则 ||a2k || = ||a||2k，从而 ||Γa||C(M) = lim
k→∞

||a2k ||2−k

= ||a||，说明 Γ

为等距单的.

4.4 一些例子

定理 4.7

♥
设M 为紧 Hausdorff空间，A = C(M)，M为其极大理想的全体，则有同胚M ∼=M .

证明 考虑映射

j :M →M, x 7→ Jx0 := {f ∈ C(M) : f(x0) = 0},

【Step 1. 证明 j 单】

若 x0 6= x1，则由 Urysohn引理，存在 f ∈ C(M)使得 f(x0) = 0, f(x1) = 1，从而 f ∈ Jx0
, f /∈ Jx1

，即

Jx1 6= Jx0 .
【Step 2. 证明 j 满】

设 J ∈M，若对任意 x ∈M 都有 J 6= Jx，则存在 fx ∈ J, fx /∈ Jx（即 fx(x) 6= 0），对任意 x ∈M，取其开
邻域 Ux 使得 fx|Ux

6= 0，则这些 {Ux : x ∈M}构成M 的开覆盖，从而有有限子覆盖 U1, · · · , Un，因此可构造

f(x) =

n∑
i=1

f̄i(x)fi(x) ∈ J,

但 f 6= 0（任意 x ∈M 都恰好在某个 Ui 中，则 f(x) ⩾ |fi(x)| > 0），因此 f ∈ G(A )，这与 J 为极大理想矛盾.
【Step 3. 证明 j 为同胚】

由于 j 为从紧空间到 Hausdorff空间的双射，因此只需证明其连续性. 设 j(x0) = Jx0
，任取 Jx0

的邻域

U(ε, f1, · · · , fn) = {Jx ∈M : |ϕJ(fi)− ϕJx0
(fi)| < ε, i = 1, · · · , n},

注意到这时 ϕJx
: C(M)→ C恰好为 x处的赋值映射，故

j−1(U(ε, f1, · · · , fn)) = {x ∈M : |fi(x)− fi(x0)| < ε, i = 1, · · · , n} =
n⋂

i=1

f−1
i (B(fi(x0), ε)),

由每个 fi 的连续性可知上述集合为开集.

4.5 C∗代数

4.5.1 C∗代数

定义 4.8 (对合)

♣

设 A 为 C-代数，若映射 ∗ : A → A 满足：

(1) (a+ b)∗ = a∗ + b∗.
(2) (λa)∗ = λ̄a∗.
(3) (ab)∗ = b∗a∗.
(4) (a∗)∗ = a.
则称之为 A 上的一个对合.
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4.5 C∗ 代数

注这些要求可以概括为共轭线性性、反变性、对合性.
从定义可以看出，对合与像复数域上的共轭、复矩阵空间的共轭转置有很多相似之处.

定义 4.9 (Hermite元（自伴元）)

♣设 A 为一个带有对合 ∗的 C-代数，若 a ∈ A 满足 a∗ = a，则称之为 A 中的一个自伴元.

定义 4.10 (C∗ 代数)

♣
设 A 为含幺 Banach代数，有对合 ∗，若对任意 a ∈ A 有 ||a∗a|| = ||a||2，则称之为一个 C∗ 代数.

引理 4.4

♥

设 A 为 C∗ 代数，a ∈ A，则

(1) a+ a∗, i(a− a∗), aa∗ 均为 Hermite元.
(2)单位元 e是 Hermite元.
(3)有唯一分解 a = u+ iv，其中 u, v均为 Hermite元.
(4) a ∈ G(A )当且仅当 a∗ ∈ G(A )，并且此时 (a∗)−1 = (a−1)∗.
(5) λ ∈ σ(a)当且仅当 λ̄ ∈ σ(a∗).

引理 4.5

♥

设 A 为 C∗ 代数，a ∈ A，则

(1) ||a∗|| = ||a||.
(2)若 a自伴，则 ||a2|| = ||a||2.

定义 4.11 (∗同态)

♣

设 A1,A2 为 C∗ 代数，φ : A1 → A2 满足

(1) φ为代数同态.
(2) φ(a∗) = (φ(a))∗.
(3) ||φ(a)|| ⩽ ||a||.
则称 φ为一个 ∗同态.

注注意到 C∗ 代数中 Hermite元 a满足 r(a) = ||a||，因此对任意满足前两条的 φ有（同态不增加谱半径）

||φ(a)||2 = ||φ(a)∗φ(a)|| = ||φ(a∗a)|| = r(φ(a∗a)) ⩽ r(a∗a) = ||a∗a|| = ||a||2,

从而第三条（连续性）是多余的.
已知对任意 Banach空间X，L(X)为 Banach代数；而对于 C∗代数，它的动机恰好来源于 Hilbert空间上的

有界线性算子代数.

定理 4.8

♥

设 H 为 Hilbert空间，则 L(H)关于取共轭 ∗构成一个 C∗ 代数，并且其任意对 ∗封闭的闭子代数都是它
的 C∗ 子代数.

证明 由对称算子的性质可得

||A∗A|| = sup
||x||=1

|〈A∗Ax, x〉| = sup
||x||=1

|〈Ax,Ax〉| = sup
||x||=1

||Ax||2 = ||A||2.

事实上，它反过来也是对的，即任意 C∗ 代数 ∗等距同构于某个 L(H)的闭 C∗ 代数. 下面仅考虑交换情形，
此时 Gelfand表示恰好给出了一个同构.
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4.5 C∗ 代数

4.5.2 Gelfand-Naimark定理

引理 4.6 (Arens)

♥
设 A 为交换 C∗ 代数且 a ∈ A 为 Hermite元，则 Γa = â为 C(M)上的实值函数.

证明 设 a为 Hermite元，J ∈M，设 ϕJ(a) = â(J) = u+ vi，考虑 a+ ite，则

|u|2 + |v + t|2 = |u+ iv + it|2 = |ϕJ(a+ ite)|2

⩽ ||(a+ ite)||2 = ||(a− ite)(a+ ite)|| = ||a2 + t2e|| ⩽ ||a||2 + t2,

由此可得 u2 + v2 + 2vt ⩽ ||a||2，由 t任意性可知 v = 0，即 â(J) ∈ R.
证明 Gelfand-Naimark定理的关键是 Stone-Weierstrass定理（证明在附录给出）.

定理 4.9 (Stone-Weierstrass: complex case)

♥

设M 为紧空间，A 为 C(M)的闭子代数，满足

(1) A 包含单位元.
(2) A 对（函数）共轭封闭.
(3)对任意 x 6= y ∈M，存在 f ∈ A 使得 f(x) 6= f(y).
则 A = C(M).

定理 4.10 (Gelfand-Naimark)

♥

设 A 为交换 C∗ 代数，则 Γ : A → C(M)是一个 ∗等距同构，即
(1)保对合：Γ(a∗) = Γ(a).
(2)等距：||Γa||C(M) = ||a||.
(3)单性：Γ为单射.
(4)满性：Γ为满射.

证明 (1)考虑自伴分解 a = u+ iv，则由 Arens引理可得

Γ(a∗) = Γ(u− iv) = Γu− iΓV = Γu+ iΓv = Γ(a).

(2)(3)注意到此时对任意 a ∈ A 有（用到了 A 的交换性）

||a2||2 = ||(a2)∗(a2)|| = ||(a∗a)(a∗a)||2 = ||a∗a||2 = ||a||4 ⇒ ||a2|| = ||a||2,

因此由推论4.2可得 Γ是等距单射.
(4)显然 Γ(A )为 C(M)的包含单位元的闭子代数（连续 +等距推出闭），且由 (1)知它对复共轭封闭，只需

验证 Γ(A )对M中的点有分离性，从而根据 Stone-Weierstrass定理可知 Γ(A ) = C(M).
对任意 I 6= J ∈M，存在 a ∈ I, a /∈ J，因此 â(I) = ϕI(a) = 0, â(J) = ϕJ(a) 6= 0，即 Γa分离 I, J，得证.
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附录 A 附录

A.1 度量空间

¶闭集与紧致集合

主要考虑紧致集合与 Heine-Borel性质之间的关系，H-B性质有两种定义方法，可以证明它们是等价的

定义 A.1 (Heine-Borel性质)

♣

称度量空间 (M,d)的子集 A具有 Heine-Borel性质，若满足如下任意一条
1. 对任意M 中的开集构成的开覆盖 B，存在 A的有限子覆盖 B′.
2. 对任意 A中的（相对）开集构成的开覆盖 B，存在 A的有限子覆盖 B′.

引理 A.1

♥任意紧致度量空间存在至多可数稠密子集.

证明 设 (M,d)为紧致度量空间，首先证明，对任意 ε > 0，存在有限个点 x1, · · · , xN 满足

M =

N⋃
k=1

Bε(xk) (A.1)

若不然，假设 ε0使得上式不成立，则任取 x1 ∈M，x2 ∈M −Bε0(x1)，x3 ∈M − (Bε0(x1)∪Bε0(x2))，以

此类推，得到点列 {xk}满足

xn+1 ∈M −

(
N⋃

k=1

Bε0(xk)

)
, (A.2)

这个点列满足 d(xj , xk) ⩾ ε0，因此没有极限点，矛盾.
根据上面的结果，令 ε = 1/n，则每个 1/n都有有限点集 An 满足上面的性质，因此 A =

⋃∞
n=1An 就是M

的至多可数稠密子集.

定理 A.1

♥
度量空间 (M,d)紧致当且仅当它具有 Heine-Borel性质.

证明 设M 具有 H-B性质，则只需要证明M 中任意点列 {xk}有极限点，不妨设其两两不同，假设某个点列不
存在极限点，则其任意子集均无聚点，因此都是闭集，下面构造一个与 H-B性质矛盾的开覆盖：

B1 =M − {x1, x2, · · · } (A.3)

B2 =M − {x2, x3 · · · } (A.4)

· · · (A.5)

Bk =M − {xk, xk+1 · · · } (A.6)

显然 {Bk}是M 的开覆盖，但它没有有限子覆盖，与 H-B性质矛盾.
反之设M紧致，首先证明其任意开覆盖B有可数子覆盖，再证明其有有限子覆盖.根据上述引理，设x1, x2, · · ·

是M 的可数稠密子集，考虑可数集合 {B1/m(xn) : m,ninN}，任取开球 B1/m(xn)，若集合

{B ∈ B : B ⊃ B1/m(xn)} (A.7)

非空，则从中任取一个B放入集族 B1，这样最后得到的集族 B1 ⊂ B是可数的，再证其覆盖M .任取 x ∈M，
存在开集 B ∈ B 包含 x，则必然存在 m ∈ N 使得 B2/m(x) ⊂ B，根据点列的稠密性可以选取某个 xn 使得



A.2 弱 *拓扑与弱 *收敛

x ∈ B1/m(xn)，根据三角不等式可知

x ∈ B1/m(xn) ⊂ B2/m(x) ⊂ B (A.8)

由 B1 的构造过程可知存在 B1 ∈ B1，它包含 x.
设 B =

⋃∞
k=1Bk 为M 的可数子覆盖，假设其无有限子覆盖，则构造点列 {xk}使得

xk ∈M −

(
k⋃

k=1

Bk

)
(A.9)

由紧致性设该点列的极限点 x ∈M，则存在包含 x的 BN 以及子列 xnk
，当 k充分大时就有 xnk

∈ BN，与

构造矛盾.

¶度量空间的连续函数

定义 A.2

♣

设 (M,dM ), (N, dN )是两个度量空间，f :M → N，下列条件之一成立时称 f 是连续函数：

1. 距离定义：对任意 x0 ∈M，ε > 0，存在 δ > 0，对任意 dM (x, x0) < δ，都有 dN (f(x), f(x0)) < ε.
2. 点列定义：对任意收敛点列 {xk} ⊂M，对应的像点列 {f(xk)} ⊂ N 也收敛.
3. 拓扑定义：N 中任意开子集 B 的原像 f−1(B)是M 的开子集.

下面证明：上述三种定义是等价的，只要证明 1⇒ 2⇒ 3.
证明 1⇒ 2 :

设 {xk} ⊂M，xk → x，可知对任意 ε > 0，存在 δ > 0，当 d(x, xk) < δ时就有 d(f(x), f(xk)) < ε，而当 k

充分大时必有 d(x, xk) < δ，因此 {f(xk)} ⊂M 收敛，且 f(xk)→ f(x).
2⇒ 3 :

设 A ⊂ N 开，任取 x ∈ f−1(A)，只需证明存在 r > 0，使得 Br(x) ⊂ f−1(A)，若不然，则对任意 r = 1/n，

都有点 xn ∈ B1/n(x) − f−1(A)，由此得到一个收敛到 x的点列 {xk}，由 2知 f(xk) → f(x) ∈ A，由于 A为

开集，故存在 ε > 0 使得 Bε(f(x)) ⊂ A，而当 k 充分大时 f(xk) ∈ Bε(f(x))，这与 xk 的取法矛盾（f(xk) ∈
f(B1/k − f−1(A)) /∈ A）.

3⇒ 1 :

设 x ∈M，对任意 ε > 0，f−1(Bε(x)) ⊂M 为开集，由此存在 δ > 0，使得 Bδ(x) ⊂ f−1(Bε(f(x)))，将此

转化为距离语言即得.

A.2 弱 *拓扑与弱 *收敛
在正文中提到了赋范空间X 上的弱收敛与其对偶空间X∗上的弱 *收敛（也称 *弱收敛），下面简要整理它

们的一些拓扑性质.

定义 A.3 (弱拓扑)

♣设 X 为赋范空间，称其上使得所有 X∗ 中的映射都连续的最弱的拓扑为 X 上的弱拓扑.

定义 A.4 (*弱拓扑)

♣设 X 为赋范空间，称 X∗ 上使所有赋值映射 evx : X∗ → C都连续的最弱的拓扑为 X∗ 上的 *弱拓扑.

注该拓扑由子基
⋃

z∈C{ev−1
x (B(z, r)) : z ∈ C, r > 0}生成，其中 ev−1

x (B(z, r)) = {f ∈ X∗ : |f(x)− z| < r}，若
记

U(ε;x1, · · · , xn) := {f ∈ X∗ : |f(xi)| < ε, i = 1, · · · , n},
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A.2 弱 *拓扑与弱 *收敛

则容易验证（可能需要用到 Hahn-Banach定理）这种集合的构成 0 ∈ X∗在 *弱拓扑下的邻域基，通过平移可以
平移构成该拓扑的基.

下面的命题说明了 *弱拓扑与 *弱收敛的关系.

命题 A.1 (*弱拓扑刻画 *弱收敛)

♠
设 {fn} ⊂ X∗，则在 *弱拓扑下 fn 收敛到 f 当且仅当 fn

w∗

→ f .

注类似也可以证明弱拓扑刻画了弱收敛.
证明 若 fn 拓扑收敛到 f，则对任意 x ∈ X，根据 evx 的连续性可知 fn(x) = evx(fn)→ evx(f) = f(x).

反之若 fn
w∗

→ f，则对任意邻域 A 3 f，取 f ∈ U(ε;x1, · · · , xm) ⊂ A，则根据 fi(xm)→ f(xm)可知存在 n

使得对任意 k > n都有 fk ∈ U(ε;x1, · · · , xm) ⊂ A，即 fn 拓扑收敛到 f .
上述命题也表明，“弱列紧”“弱 *列紧”实际上就是对应拓扑下的列紧性.

命题 A.2

♠设 X 为赋范空间，则 X∗ 在 *弱拓扑下构成拓扑向量空间.

引理 A.2 (弱拓扑与 *弱拓扑的 Hausdorff性)

♥设 X 为赋范空间，则 X∗ 在其 *弱拓扑下构成 Hausdorff空间.

注类似可证 X 在弱拓扑下也构成 Hausdorff空间.
证明 设 ϕ 6= ψ ∈ X∗，则存在 x0 ∈ X 使得 ϕ(x0) 6= ψ(x0)，取 0 < ε ⩽ |ϕ(x0)− ψ(x0)|/2，则

(ϕ+ U(ε;x0)) ∩ (ψ + U(ε;x0)) = ∅

否则存在 ϕ1, ϕ2 ∈ U(ε;x0)使得 ϕ+ ϕ1 = ψ + ϕ2，从而有矛盾：

2ε < |ϕ(x0)− ψ(x0)| = |ϕ1(x0)− ϕ2(x0)| ⩽ |ϕ1(x0)|+ |ϕ2(x0)| < 2ε.

引理 A.3 (紧性的“固有”性)

♥设 X 为拓扑空间，A ⊂ B ⊂ X，则 A为 X 的紧集当且仅当它是 B （取子空间拓扑）的紧集.

注也就是说，任何“相对紧集”一定是紧的（但是一般相对开/闭集不一定是开/闭的）.

定理 A.2 (Alaoglu)

♥
设 X 为赋范空间，则 X∗ 中的单位闭球 S = {f ∈ X∗ : ||f || ⩽ 1}是弱 *紧的.

证明 对任意 x ∈ X，记 Yx := C，考虑乘积空间 Y =
∏

x∈X Yx 以及单射（单性是显然的）

τ : X∗ → Y, f 7→ {f(x)}x∈X .

目标是通过嵌入，在 Y 中证明 τ(S)的紧性，这将首先证明：

τ 为闭嵌入.
S ⊂ X∗ 闭（从而 τ(S) ⊂ Y 闭）.
注意到 τ(S) ⊂

∏
x∈X B(0, ||x||) := Ỹ 且后者为闭紧集（Tychonoff + Y 的 Hausdorff性），从而 τ(S)作为紧

空间的闭子集是紧的，借助 τ 可知 S （在弱 *拓扑下）紧.
【Step 1. 证明 τ 连续】

设 τ(f) = {f(x)}x∈X，则对 {f(x)}x∈X ∈ Y 的任意邻域子基 Bx(f(x), ε)（这表示 Y 的仅在 x分量上为开

球，其余均为 C的开子集）有

τ−1(Bx(f(x), ε)) = {g ∈ X∗ : |g(x)− f(x)| < ε} = f + U(ε;x),

得证.
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【Step 2-1. 证明 τ 为嵌入，即 τ−1 : τ(X∗)→ X∗ 连续.】
设 τ(f) = {f(x)}x∈X，则对 f ∈ X∗ 的任意邻域子基 U(ε;x0)有

τ(U(ε;x0)) = {{g(x)}x∈X ∈ Y : g ∈ X∗, |g(x0)− f(x0)| < ε} = Bx0(g(x), ε) ∩ τ(X∗).

【Step 2-2. 证明 τ(X∗) ⊂ Y 闭.】
任取 {zx}x∈X ∈ τ(X∗)，则对 {zx}x∈X 的任意邻域 O都有 O ∩ τ(X∗) 6= ∅. 下证 {zx}x∈X ∈ τ(X∗)，这相当

于是说可以通过 x 7→ zx 给出的映射 f : X → C确实为 X∗ 中的元素.
数乘：对任意 λ ∈ C, x ∈ X, ε > 0，则存在 g ∈ Bx(zx, ε)×Bλx(λx, ε) ∩ τ(X∗)，因此

|zλx − λzx| ⩽ |zλx − g(λx)|+ |λ| |g(x)− zx| ⩽ (1 + |λ|)ε,

由 ε任意性可知 zλx = λzx.
加法：类似上面，自证不难.
连续性：任取 {xn} ⊂ X,xn → 0，需证 zxn

→ 0，对任意 n ∈ N, ε > 0，存在 gε ∈ Bxn
(zxn

, ε)，即

|gε(xn)− zxn | ⩽ ε，由此可得

|zxn
| ⩽ ε+ |gε(xn)| ⇒ lim sup

n→∞
|zxn
| ⩽ ε,

由 ε任意性可知 zxn
→ 0.

【Step 3. 证明 S ⊂ X∗ 闭.】
任取 f ∈ Sw∗

，则对其任意邻域 O都有 O ∩ S 6= ∅，对任意 ε > 0, ||x|| = 1，存在 g ∈ (f + U(ε;x)) ∩ S，即
|f(x)− g(x)| ⩽ ε，由此可得 |f(x)| ⩽ |g(x)|+ ε ⩽ 1 + ε，由 x, ε的任意性可知 ||f || ⩽ 1，即 f ∈ S.

A.3 Stone-Weierstrass定理
本节证明在前文用到的 Stone-Weierstrass定理.

定理 A.3 (Ston-Weierstrass: real case)

♥

设M 为紧空间，B为 C(M)r 的闭子代数，满足

(1) B包含单位元.
(2)对任意 x 6= y ∈M，存在 f ∈ B使得 f(x) 6= f(y).
则B = C(M)r.

注事实上，满足这种分离性质的M 一定是 Hausdorff的.
证明 【Step 1. 准备工作：证明B对 max,min封闭】

注意到

max{f, g} = 1

2
(f + g + |f − g|), min{f, g} = 1

2
(f + g − |f − g|),

只需证明对任意 f ∈ B有 |f | ∈ B. 记闭区间 [a, b] = [−||f ||, ||f ||]，由Weierstrass逼近定理，存在 [a, b]上的多项

式函数 Pn(t)逼近 g(t) = |t|，因此 Pn(f(x)) ∈ B在M 上也逼近 g(f(x)) = |f(x)|，由B的闭性即得 |f | ∈ B.
【Step 2. 证明B ⊂ C(M)r 稠密】

任取 h ∈ C(M)r, ε > 0，下面构造 f ∈ B使得 ||f − h|| < ε.
对任意 x, y ∈M，若 x = y则令 fxy(z) ≡ h(x)；若 x 6= y则必然存在 g ∈ B使得 g(x) 6= g(y)，此时令

fxy(z) =
g(x)− g(z)
g(x)− g(y)

h(y) +
g(z)− g(y)
g(x)− g(y)

h(x),

从而对任意 x, y ∈M 有 fxy ∈ B（因为它包含单位元）且 fxy(x) = h(x), fxy(y) = h(y).
固定 x ∈M，对于任意 fxy，由连续性，对任意 ε > 0，存在 y的开邻域 Vy 使得

fxy(z)− h(z) > −ε, ∀z ∈ Vy,
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这些 {Vy : y ∈M}构成M 的开覆盖，从而有有限子覆盖 V1, · · · , Vn，令 fx = max{fxy1 , · · · , fxyn}则有

fx(z)− h(z) ⩾ max{fxy1(z)− h(z), · · · , fxyn(z)− h(z)} > −ε.

类似由连续性，对任意 x ∈M，存在 x的开邻域 Ux 使得

fx(z)− h(z) < ε, ∀z ∈ Ux,

因此借助同样的手法，取 min可得 f ∈ B（封闭性），它满足

−ε < f(z)− h(z) < ε, ∀z ∈M ⇒ ||f − h|| < ε,

因此由 ε的任意性可知B = B = C(M)r，得证.

定理 A.4 (Stone-Weierstrass: complex case)

♥

设M 为紧空间，A 为 C(M)的闭子代数，满足

(1) A 包含单位元.
(2) A 对（函数）共轭封闭.
(3)对任意 x 6= y ∈M，存在 f ∈ A 使得 f(x) 6= f(y).
则 A = C(M).

证明 设B = A ∩C(M)r，则它是C(M)r的包含单位元的闭子代数，对任意 x 6= y ∈M，存在 f = g+ih ∈ A 使得

f(x) 6= f(y)（其中 g, h ∈ C(M)r），因此必有 g(x) 6= g(y)或 h(x) 6= h(y)成立，而 g = 1
2 (f+f̄), h = 1

2i (f−f̄) ∈ B，

因此B也有分离性质，从而由实情形可得

B = C(M)r ⇒ A ⊃ B + iB = C(M)r + iC(M)r = C(M),

得证.
事实上，上述结论还可以推广到局部紧情形，推广的思路是考虑“紧支函数”与一点紧化.

定义 A.5

♣

设 X 为局部紧空间，f ∈ C(X,R)，若对任意 ε > 0，存在紧集 Dε ⊂ X 使得 |f(x)| < ε, ∀x /∈ Dε，则称

它“在无穷远处为 0”，记这种函数的全体为 C∞(X).

定义 A.6 (一点紧化)

♣

设 (X, T )为 Hausdorff空间，定义 X+ = X ∪ {∞}上的拓扑

T+ := τ ∪ {X+ −K : K compact in X},

称 (X+, T+)为 X 的一点紧化空间.

注 Hausdorff性是必要的，否则 T+ 未必是一个拓扑.

命题 A.3

♠

设 X 为非紧 Hausdorff空间，则 (1) X ↪→ X+为嵌入.
(2) X ⊂ X+ 稠密.
(3) X+ 为一个紧空间.
(4)若 X 还是局部紧的，则 X+ 是 Hausdorff空间.

证明 (1)注意到对任意 O ∈ T+，O − {∞} ∈ T，因此 X ↪→ X+ 为嵌入.
(2)任取∞的开邻域 X+ −K，则 X 非紧说明K 6= X，因此 (X+ −K) ∩X 6= ∅，得证.
(3)设 {Oα}为 X+ 的开覆盖，则存在某个 Oα0

= X+ −K 包含∞，同时 {Oα − {∞} : α 6= α0}为 K 的开

覆盖，它存在有限子覆盖 {O1−{∞}, · · · , On−{∞}}，从而 {Oα0
, O1, · · · , On}即为 {Oα}的有限子覆盖，说明

X+紧.
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(4)只需验证 x ∈ X ⊂ X+与∞可分离. 由局部紧可取 x的预紧开邻域K，则K,X+ −K 分离 x,∞.

引理 A.4

♥

设 X 为 Hausdorff空间，X+ 为其一点紧化，则

(1)对任意 f ∈ C∞(X)，可可将其零延拓为 f̃ ∈ C(X+)r. 特别当 X 非紧时，该延拓是唯一的.
(2)反之若 g ∈ C(X+)r 且 g(∞) = 0，则必然存在 f ∈ C∞(X)使得 g = f̃ .

注换句话说，对于非紧Hausdorff空间X，零延拓与限制给出了R-代数同构C∞(X) ∼= {f ∈ C(X+)r : f(∞) = 0}.
证明 (1)设 f ∈ C∞(X)，只需证明 f̃ 在∞处连续，任取 0 ∈ R的开邻域 (−ε, ε)，存在 X 的紧集 Dε 使得对任

意 x ∈ X −Dε 有 |f(x)| < ε，即 f̃−1(−ε, ε) ⊃ X+ −Dε，得证. 若 X 非紧，则

(2)取 f = g|X 即可（X ↪→ X+为嵌入保证了 f 的连续性，g在∞的连续性保证了 f ∈ C∞(X)）.

定理 A.5

♥

设 X 为局部紧空间，A 为 C∞(X)的闭子代数，若 A 分离 X 中的点，并且对任意 x ∈ X，存在 f ∈ A

满足 f(x) 6= 0，则 A = C∞(X).

注同样的，分离性蕴含了 X 是 Hausdorff的.
证明 记 X+ = X ∪ {∞}为 X 的一点紧化，令（f̃ 为 f ∈ C∞(M)的零延拓）

A ′ := {f̃ + r : f ∈ A , r ∈ R} ⊂ C(X+)r,

下面验证 A ′ 满足 Stone-Weierstrass定理的条件，从而有 A ′ = C(X+)r，再通过零延拓证明 A = C∞(X).
【Step 1. 证明 A ′ 为 C(X+)r 的包含单位元的闭子代数，且有分离性质】

显然 A ′ 为子代数且 1 = 0 + 1 ∈ A ′，下证闭. 若 f̃n + rn → g ∈ C(X+)r，则它必然在∞处收敛，即

f̃(∞) + rn = rn → g(∞),

从而

||f̃n − (g − g(∞))|| ⩽ ||f̃ + rn − g||+ |rn − g(∞)| → 0,

这说明 f̃n → g−g(∞)，其极限在∞处取 0，因此存在 h ∈ C∞(X)使得 h̃ = g−g(∞)，从而 f̃n+rn → h̃+g(∞) ∈
A ′，故其闭.

再说明分离性，若 x, y ∈ X ⊂ X+则取 A 中的分离函数，零延拓即得；若 x ∈ X ⊂ X+,∞ ∈ X+，则由条

件可知存在 f ∈ A 使得 f(x) 6= 0，零延拓即得.
【Step 2. 由实 Stone-Weierstrass定理可知 A ′ = C(X+)r】

【Step 3. 证明 A = C∞(X)】

任取 f ∈ C∞(X)，零延拓为 f̃ ∈ C(X+)r，从而存在 g ∈ A , r ∈ R使得 f̃ = g̃+ r（Step 2），即对任意 x ∈ X
有 f(x)− g(x) = r，但对任意 ε > 0，可取紧集Dε使得对任意 x /∈ Dε有 |f(x)|, |g(x)| < ε，因此 |r| < 2ε，由任

意性可知 r = 0，因此 f = g ∈ A，得证.
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